The unique immune ecosystems in pediatric brain tumors: integrating single-cell and bulk RNA-sequencing

被引:0
|
作者
Cao, Liangliang [1 ]
Xie, Wanqun [1 ]
Ma, Wenkun [1 ]
Zhao, Heng [1 ]
Wang, Jiajia [1 ]
Liang, Zhuangzhuang [1 ]
Tian, Shuaiwei [1 ]
Wang, Baocheng [1 ]
Ma, Jie [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Xinhua Hosp, Dept Pediat Neurosurg, Shanghai, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
中国国家自然科学基金;
关键词
pediatrics; brain tumors; tumor microenvironment; single-cell RNA-seq; immunotherapy; EXPRESSION; HETEROGENEITY; LANDSCAPE;
D O I
10.3389/fimmu.2023.1238684
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundThe significant progress of immune therapy in non-central nervous system tumors has sparked interest in employing the same strategy for adult brain tumors. However, the advancement of immunotherapy in pediatric central nervous system (CNS) tumors is not yet on par. Currently, there is a lack of comprehensive comparative studies investigating the immune ecosystem in pediatric and adult CNS tumors at a high-resolution single-cell level.MethodsIn this study, we comprehensively analyzed over 0.3 million cells from 171 samples, encompassing adult gliomas (IDH wild type and IDH mutation) as well as four major types of pediatric brain tumors (medulloblastoma (MB), ependymoma (EPN), H3K27M-mutation (DIPG), and pediatric IDH-mutation glioma (P-IDH-M)). Our approach involved integrating publicly available and newly generated single-cell datasets. We compared the immune landscapes in different brain tumors, as well as the detailed functional phenotypes of T-cell and myeloid subpopulations. Through single-cell analysis, we identified gene sets associated with major cell types in the tumor microenvironment (gene features from single-cell data, scFes) and compared them with existing gene sets such as GSEA and xCell. The CBTTC and external GEO cohort was used to analyze and validate the immune-stromal-tumor patterns in pediatric brain tumors which might potentially respond to the immunotherapy.ResultsFrom the perspective of single-cell analysis, it was observed that major pediatric brain tumors (MB, EPN, P-IDH-M, DIPG) exhibited lower immune contents compared with adult gliomas. Additionally, these pediatric brain tumors displayed diverse immunophenotypes, particularly in regard to myeloid cells. Notably, the presence of HLA-enriched myeloid cells in MB was found to be independently associated with prognosis. Moreover, the scFes, when compared with commonly used gene features, demonstrated superior performance in independent single-cell datasets across various tumor types. Furthermore, our study revealed the existence of heterogeneous immune ecosystems at the bulk-RNA sequencing level among different brain tumor types. In addition, we identified several immune-stromal-tumor patterns that could potentially exhibit significant responses to conventional immune checkpoint inhibitors.ConclusionThe single-cell technique provides a rational path to deeply understand the unique immune ecosystem of pediatric brain tumors. In spite of the traditional attitudes of "cold" tumor towards pediatric brain tumor, the immune-stroma-tumor patterns identified in this study suggest the feasibility of immune checkpoint inhibitors and pave the way for the upcoming tide of immunotherapy in pediatric brain tumors.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Single-cell RNA-sequencing analysis of early sea star development
    Foster, Stephany
    Oulhen, Nathalie
    Fresques, Tara
    Zaki, Hossam
    Wessel, Gary
    DEVELOPMENT, 2022, 149 (22):
  • [42] Consensus Nature Inspired Clustering of Single-Cell RNA-Sequencing Data
    Abou El-Naga, Amany H.
    Sayed, Sabah
    Salah, Akram
    Mohsen, Heba
    IEEE ACCESS, 2022, 10 : 98079 - 98094
  • [43] Missing data and technical variability in single-cell RNA-sequencing experiments
    Hicks, Stephanie C.
    Townes, F. William
    Teng, Mingxiang
    Irizarry, Rafael A.
    BIOSTATISTICS, 2018, 19 (04) : 562 - 578
  • [44] Single-cell RNA-sequencing of human eosinophils in allergic inflammation in the esophagus
    Morgenstern, Netali Ben-Baruch
    Rochman, Mark
    Kotliar, Michael
    Dunn, Julia L. M.
    Mack, Lydia
    Besse, John
    Natale, Mia A.
    Klingler, Andrea M.
    Felton, Jennifer M.
    Caldwell, Julie M.
    Barski, Artem
    Rothenberg, Marc E.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2024, 154 (04) : 974 - 987
  • [45] IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline
    Knight, Connor H.
    Khan, Faraz
    Patel, Ankit
    Gill, Upkar S.
    Okosun, Jessica
    Wang, Jun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [46] Characterization of iCell cardiomyocytes using single-cell RNA-sequencing methods
    Schmid, Christina
    Wohnhaas, Christian T.
    Hildebrandt, Tobias
    Baum, Patrick
    Rast, Georg
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2020, 106
  • [47] Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods
    Dal Molin, Alessandra
    Baruzzo, Giacomo
    Di Camillo, Barbara
    FRONTIERS IN GENETICS, 2017, 8
  • [48] TIGIT Blockade Reshapes the Tumor Microenvironment Based on the Single-cell RNA-Sequencing Analysis
    Lang, Yanyan
    Huang, Hao
    Jiang, Hongwei
    Wu, Shaoxian
    Chen, Yaping
    Xu, Bin
    Liu, Yingting
    Zhu, Dawei
    Zheng, Xiao
    Chen, Lujun
    Jiang, Jingting
    JOURNAL OF IMMUNOTHERAPY, 2024, 47 (05) : 172 - 181
  • [49] Accounting for technical noise in Bayesian graphical models of single-cell RNA-sequencing data
    Oh, Jihwan
    Chang, Changgee
    Long, Qi
    BIOSTATISTICS, 2022, 24 (01) : 161 - 176
  • [50] Single-cell RNA-sequencing reveals predictive features of response to pembrolizumab in Sezary syndrome
    Su, Tianying
    Duran, George E.
    Kwang, Alexa C.
    Ramchurren, Nirasha
    Fling, Steven P.
    Kim, Youn H.
    Khodadoust, Michael S.
    ONCOIMMUNOLOGY, 2022, 11 (01):