MAGNETO: Cell type marker panel generator from single-cell transcriptomic data

被引:1
作者
Tangherloni, Andrea [1 ,2 ]
Riva, Simone G. [3 ]
Myers, Brynelle [4 ]
Buffa, Francesca M. [1 ,2 ,5 ]
Cazzaniga, Paolo [6 ,7 ]
机构
[1] Bocconi Univ, Dept Comp Sci, Via Guglielmo Rontgen 1, I-20136 Milan, Italy
[2] Bocconi Univ, Bocconi Inst Data Sci & Analyt, Via Rontgen 1, I-20136 Milan, Italy
[3] Univ Oxford, Weatherall Inst Mol Med, Radcliffe Dept Med, Oxford OX3 9DS, England
[4] Univ Oxford, Wellcome Ctr Human Genet, Roosevelt Dr, Oxford OX3 7BN, England
[5] Univ Oxford, Dept Oncol, Old Rd Campus Res Bldg, Oxford OX3 7DQ, England
[6] Univ Bergamo, Dept Human & Social Sci, Piazzale S Agostino 2, IT-24129 Bergamo, Italy
[7] Bicocca Bioinformat Biostat & Bioimaging Ctr B4, Via Follereau 3, I-20854 Vedano Al Lambro, Italy
基金
欧洲研究理事会;
关键词
Single-cell RNA-seq; Marker gene selection; Marker panels; Bioinformatics; Multi-objective optimization; RNA-SEQ; EXPRESSION; RECONSTRUCTION; LYMPHOCYTE; CD5;
D O I
10.1016/j.jbi.2023.104510
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Single-cell RNA sequencing experiments produce data useful to identify different cell types, including uncharacterized and rare ones. This enables us to study the specific functional roles of these cells in different microenvironments and contexts. After identifying a (novel) cell type of interest, it is essential to build succinct marker panels, composed of a few genes referring to cell surface proteins and clusters of differentiation molecules, able to discriminate the desired cells from the other cell populations. In this work, we propose a fully-automatic framework called MAGNETO, which can help construct optimal marker panels starting from a single-cell gene expression matrix and a cell type identity for each cell. MAGNETO builds effective marker panels solving a tailored bi-objective optimization problem, where the first objective regards the identification of the genes able to isolate a specific cell type, while the second conflicting objective concerns the minimization of the total number of genes included in the panel. Our results on three public datasets show that MAGNETO can identify marker panels that identify the cell populations of interest better than state-of-the-art approaches. Finally, by fine-tuning MAGNETO, our results demonstrate that it is possible to obtain marker panels with different specificity levels.
引用
收藏
页数:12
相关论文
共 72 条
  • [1] Evaluation of a 12-Color Flow Cytometry Panel to Study Lymphocyte, Monocyte, and Dendritic Cell Subsets in Humans
    Autissier, Patrick
    Soulas, Caroline
    Burdo, Tricia H.
    Williams, Kenneth C.
    [J]. CYTOMETRY PART A, 2010, 77A (05) : 410 - 419
  • [2] A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure
    Baron, Maayan
    Veres, Adrian
    Wolock, Samuel L.
    Faust, Aubrey L.
    Gaujoux, Renaud
    Vetere, Amedeo
    Ryu, Jennifer Hyoje
    Wagner, Bridget K.
    Shen-Orr, Shai S.
    Klein, Allon M.
    Melton, Douglas A.
    Yanai, Itai
    [J]. CELL SYSTEMS, 2016, 3 (04) : 346 - +
  • [3] Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting
    Becht, Etienne
    Simoni, Yannick
    Coustan-Smith, Elaine
    Evrard, Maximilien
    Cheng, Yang
    Ng, Lai Guan
    Campana, Dario
    Newell, Evan W.
    [J]. BIOINFORMATICS, 2019, 35 (02) : 301 - 308
  • [4] SMS-EMOA: Multiobjective selection based on dominated hypervolume
    Beume, Nicola
    Naujoks, Boris
    Emmerich, Michael
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1653 - 1669
  • [5] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [6] Bombaci M, 2019, METHODS MOL BIOL, V1959, P247, DOI 10.1007/978-1-4939-9164-8_16
  • [7] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Butler, Andrew
    Hoffman, Paul
    Smibert, Peter
    Papalexi, Efthymia
    Satija, Rahul
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 411 - +
  • [8] CCR7 expression and memory T cell diversity in humans
    Campbell, JJ
    Murphy, KE
    Kunkel, EJ
    Brightling, CE
    Soler, D
    Shen, ZM
    Boisvert, J
    Greenberg, HB
    Vierra, MA
    Goodman, SB
    Genovese, MC
    Wardlaw, AJ
    Butcher, EC
    Wu, LJ
    [J]. JOURNAL OF IMMUNOLOGY, 2001, 166 (02) : 877 - 884
  • [9] Pancreas plus plus : automated quantification of pancreatic islet cells in microscopy images
    Chen, Hongyu
    Martin, Bronwen
    Cai, Huan
    Fiori, Jennifer L.
    Egan, Josephine M.
    Siddiqui, Sana
    Maudsley, Stuart
    [J]. FRONTIERS IN PHYSIOLOGY, 2013, 3
  • [10] Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States
    Collier, Amanda J.
    Panula, Sarita P.
    Schell, John Paul
    Chovanec, Peter
    Reyes, Alvaro Plaza
    Petropoulos, Sophie
    Corcoran, Anne E.
    Walker, Rachael
    Douagi, Iyadh
    Lanner, Fredrik
    Rugg-Gunn, Peter J.
    [J]. CELL STEM CELL, 2017, 20 (06) : 874 - +