TransFusionOdom: Transformer-Based LiDAR-Inertial Fusion Odometry Estimation

被引:14
|
作者
Sun, Leyuan [1 ,2 ]
Ding, Guanqun [3 ]
Qiu, Yue [2 ]
Yoshiyasu, Yusuke [2 ]
Kanehiro, Fumio [1 ,4 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, CNRS AIST Joint Robot Lab JRL, IRL, Tsukuba 3058560, Japan
[2] Natl Inst Adv Ind Sci & Technol, Comp Vis Res Team, Artificial Intelligence Res Ctr AIRC, Tsukuba 3058560, Japan
[3] Natl Inst Adv Ind Sci & Technol, Digital Architecture Res Ctr DigiARC, Tokyo 1350064, Japan
[4] Univ Tsukuba, Grad Sch Sci & Technol, Dept Intelligent & Mech Interact Syst, Tsukuba 3050006, Japan
基金
日本学术振兴会;
关键词
Attention mechanisms; LiDAR-inertial odometry (LIO); multimodal learning; sensor data fusion; transformer; ROBUST; DEPTH; CNN;
D O I
10.1109/JSEN.2023.3302401
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multimodal fusion of sensors is a commonly used approach to enhance the performance of odometry estimation, which is also a fundamental module for mobile robots. Recently, learning-based approaches garner the attention in this field, due to their robust nonhandcrafted designs. However, the question of How to perform fusion among different modalities in a supervised sensor fusion odometry estimation task? is one of the challenging issues still remaining. Some simple operations, such as elementwise summation and concatenation, are not capable of assigning adaptive attentional weights to incorporate different modalities efficiently, which makes it difficult to achieve competitive odometry results. Besides, the Transformer architecture has shown potential for multimodal fusion tasks, particularly in the domains of vision with language. In this work, we propose an end-to-end supervised Transformer-based LiDAR-Inertial fusion framework (namely TransFusionOdom) for odometry estimation. The multiattention fusion module demonstrates different fusion approaches for homogeneous and heterogeneous modalities to address the overfitting problem that can arise from blindly increasing the complexity of the model. Additionally, to interpret the learning process of the Transformer-based multimodal interactions, a general visualization approach is introduced to illustrate the interactions between modalities. Moreover, exhaustive ablation studies evaluate different multimodal fusion strategies to verify the performance of the proposed fusion strategy. A synthetic multimodal dataset is made public to validate the generalization ability of the proposed fusion strategy, which also works for other combinations of different modalities. The quantitative and qualitative odometry evaluations on the KITTI dataset verify that the proposed TransFusionOdom can achieve superior performance compared with other learning-based related works.
引用
收藏
页码:22064 / 22079
页数:16
相关论文
共 50 条
  • [41] LVIO-Fusion:Tightly-Coupled LiDAR-Visual-Inertial Odometry and Mapping in Degenerate Environments
    Zhang, Hongkai
    Du, Liang
    Bao, Sheng
    Yuan, Jianjun
    Ma, Shugen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (04) : 3783 - 3790
  • [42] WAVEGLOVE: TRANSFORMER-BASED HAND GESTURE RECOGNITION USING MULTIPLE INERTIAL SENSORS
    Kralik, Matej
    Suppa, Marek
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1576 - 1580
  • [43] Visual-LiDAR-Inertial Odometry: A New Visual-Inertial SLAM Method based on an iPhone 12 Pro
    Jin, Lingqiu
    Ye, Cang
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 1511 - 1516
  • [44] LiDAR-Visual-Inertial Odometry Based on Optimized Visual Point-Line Features
    He, Xuan
    Gao, Wang
    Sheng, Chuanzhen
    Zhang, Ziteng
    Pan, Shuguo
    Duan, Lijin
    Zhang, Hui
    Lu, Xinyu
    REMOTE SENSING, 2022, 14 (03)
  • [45] Transformer-based Sideslip Angle Estimation for Autonomous Vehicle Applications
    Meng, Dele
    Li, Zongxuan
    Chu, Hongqing
    Tian, Mengjian
    Kang, Qiao
    Gao, Bingzhao
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 226 - 231
  • [46] An autonomous UAV system based on adaptive LiDAR inertial odometry for practical exploration in complex environments
    Kim, Boseong
    Azhari, Maulana Bisyir
    Park, Jaeyong
    Shim, David Hyunchul
    JOURNAL OF FIELD ROBOTICS, 2024, 41 (03) : 669 - 698
  • [47] LIGO: A Tightly Coupled LiDAR-Inertial-GNSS Odometry Based on a Hierarchy Fusion Framework for Global Localization With Real-Time Mapping
    He, Dongjiao
    Li, Haotian
    Yin, Jie
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 1224 - 1244
  • [48] WFormer: A Transformer-Based Soft Fusion Model for Robust Image Watermarking
    Luo, Ting
    Wu, Jun
    He, Zhouyan
    Xu, Haiyong
    Jiang, Gangyi
    Chang, Chin-Chen
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 4179 - 4196
  • [49] GRU- and Transformer-Based Periodicity Fusion Network for Traffic Forecasting
    Zhang, Yazhe
    Liu, Shixuan
    Zhang, Ping
    Li, Bo
    ELECTRONICS, 2023, 12 (24)
  • [50] Multimodal Emotion Recognition With Transformer-Based Self Supervised Feature Fusion
    Siriwardhana, Shamane
    Kaluarachchi, Tharindu
    Billinghurst, Mark
    Nanayakkara, Suranga
    IEEE ACCESS, 2020, 8 (08): : 176274 - 176285