Morpho-physiological mechanisms of two different quinoa ecotypes to resist salt stress

被引:9
|
作者
Hussin, Sayed A. [1 ]
Ali, Safwat Hassan [2 ]
Lotfy, Muhammad E. [1 ]
Abd El-Samad, Emad H. [3 ]
Eid, Mohamed A. [4 ]
Abd-Elkader, Ali M. [1 ]
Eisa, Sayed Said [1 ]
机构
[1] Ain Shams Univ, Fac Agr, Agr Bot Dept, POB 68, Cairo 11241, Egypt
[2] Ain Shams Univ, Fac Agr, Agr Biochem Dept, POB 68, Cairo 11241, Egypt
[3] Natl Res Ctr, Agr & Biol Res Inst, Vegetable Res Dept, 33 El Buhouth St, Giza 12622, Egypt
[4] Ain Shams Univ, Fac Agr, Soil Sci Dept, POB 68, Cairo 11241, Egypt
关键词
Salinity; Quinoa cultivars; Photosynthesis; Osmotic potential; K+; Na+ ratio; ELEVATED ATMOSPHERIC CO2; CHENOPODIUM-QUINOA; SALINITY TOLERANCE; WATER RELATIONS; ELECTRON-TRANSPORT; SODIUM-CHLORIDE; NACL-SALINITY; GAS-EXCHANGE; WILLD; GROWTH;
D O I
10.1186/s12870-023-04342-4
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundQuinoa (Chenopodium quinoa Willd.) is a facultative halophyte showing various mechanisms of salt resistance among different ecotype cultivars. This study aimed to determine salt resistance limits for a Peruvian sea level ecotype "Hualhuas" and a Bolivian salar ecotype "Real" and elucidate individual mechanisms conferring differences in salt resistance between these cultivars. The plants were grown in sandy soil and irrigated with various saline solutions concentrations (0, 100, 200, 300, 400, and 500 mM NaCl) under controlled conditions.ResultsHigh salinity treatment (500 mM NaCl) reduced the plant growth by 80% and 87% in Hualhuas and Real cultivars, respectively. EC50 (water salinity which reduces the maximum yield by 50%) was at a salinity of 300 mM NaCl for Hualhuas and between 100 and 200 mM NaCl for Real plants. Both cultivars were able to lower the osmotic potential of all organs due to substantial Na+ accumulation. However, Hualhuas plants exhibited distinctly lower Na+ contents and consequently a higher K+/Na+ ratio compared to Real plants, suggesting a more efficient control mechanism for Na+ loading and better K+ retention in Hualhuas plants. Net CO2 assimilation rates (A(net)) were reduced, being only 22.4% and 36.2% of the control values in Hualhuas and Real, respectively, at the highest salt concentration. At this salinity level, Hualhuas plants showed lower stomatal conductance (g(s)) and transpiration rates (E), but higher photosynthetic water use efficiency (PWUE), indicative of an efficient control mechanism over the whole gas-exchange machinery.ConclusionThese results reveal that Hualhuas is a promising candidate in terms of salt resistance and biomass production compared to Real.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress
    Abbasi, Ghulam Hasan
    Akhtar, Javaid
    Anwar-ul-Haq, Muhammad
    Malik, Waqas
    Ali, Shafaqat
    Chen, Zhong-Hua
    Zhang, Guoping
    PLANT GROWTH REGULATION, 2015, 75 (01) : 115 - 122
  • [32] Deciphering trait associated morpho-physiological responses in pearlmillet hybrids and inbred lines under salt stress
    Kumar, Ashwani
    Sheoran, Parvender
    Mann, Anita
    Yadav, Devvart
    Kumar, Arvind
    Devi, Sunita
    Kumar, Naresh
    Dhansu, Pooja
    Sharma, Dinesh K.
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [33] Morpho-Physiological and Biochemical Tolerance Mechanisms in Two Varieties of Oryza sativa to Salinity
    Srivastava, S.
    Sharma, P. K.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2022, 69 (02)
  • [34] Morpho-Physiological and Biochemical Tolerance Mechanisms in Two Varieties of Oryza sativa to Salinity
    S. Srivastava
    P. K. Sharma
    Russian Journal of Plant Physiology, 2022, 69
  • [35] Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars
    Cai, Zhi-Quan
    Gao, Qi
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [36] Differential Effect of Heat Stress on Drought and Salt Tolerance Potential of Quinoa Genotypes: A Physiological and Biochemical Investigation
    Abbas, Ghulam
    Areej, Fiza
    Asad, Saeed Ahmad
    Saqib, Muhammad
    Anwar-ul-Haq, Muhammad
    Afzal, Saira
    Murtaza, Behzad
    Amjad, Muhammad
    Naeem, Muhammad Asif
    Akram, Muhammad
    Akhtar, Naseem
    Aftab, Muhammad
    Siddique, Kadambot H. M.
    PLANTS-BASEL, 2023, 12 (04):
  • [37] Quinoa (Chenopodium quinoa Willd.): Genetic Diversity According to ISSR and SCoT Markers, Relative Gene Expression, and Morpho-Physiological Variation under Salinity Stress
    Abd El-Moneim, Diaa
    ELsarag, Eman I. S.
    Aloufi, Salman
    El-Azraq, Asmaa M.
    ALshamrani, Salha Mesfer
    Safhi, Fatmah Ahmed Ahmed
    Ibrahim, Amira A.
    PLANTS-BASEL, 2021, 10 (12):
  • [38] Triticum aestivum: antioxidant gene profiling and morpho-physiological studies under salt stress
    Ramzan, Musarrat
    Gillani, Memoona
    Shah, Anis Ali
    Shah, Adnan Noor
    Kauser, Naheed
    Jamil, Muhammad
    Ahmad, Rana Touqeer
    Ullah, Sami
    MOLECULAR BIOLOGY REPORTS, 2023, 50 (03) : 2569 - 2580
  • [39] Morpho-physiological and gene expression responses of wheat by Aegilops cylindrica amphidiploids to salt stress
    Kiani, Razieh
    Arzani, Ahmad
    Mirmohammady Maibody, S. A. M.
    Rahimmalek, Mehdi
    Razavi, Khadijeh
    PLANT CELL TISSUE AND ORGAN CULTURE, 2021, 144 (03) : 619 - 639
  • [40] Morpho-Physiological Attributes of Different Maize (Zea mays L.) Genotypes Under Varying Salt Stress Conditions
    Zia, Adil
    Munsif, Fazal
    Jamal, Aftab
    Mihoub, Adil
    Saeed, Muhammad Farhan
    Fawad, Muhammad
    Ahmad, Izaz
    Ali, Abid
    GESUNDE PFLANZEN, 2022, 74 (03): : 661 - 673