BB84 quantum key distribution transmitter utilising broadband sources and a narrow spectral filter

被引:4
作者
Noblet, Yoann [1 ]
Donaldson, Ross [1 ]
机构
[1] Heriot Watt Univ, Scottish Univ Phys Alliance, Inst Photon & Quantum Sci, Sch Engn & Phys Sci, David Brewster Bldg, Edinburgh EH14 4AS, Scotland
基金
“创新英国”项目;
关键词
POLARIZATION MEASUREMENTS; SECURITY;
D O I
10.1364/OE.487424
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The secure nature of Quantum Key Distribution (QKD) protocols makes it necessary to ensure that the single photon sources are indistinguishable. Any spectral, temporal or spatial discrepancy between the sources would lead to a breach in the security proofs of the QKD protocols. Traditional, weak-coherent pulse implementations of polarization-based QKD protocols have relied on identical photon sources obtained through tight temperature control and spectral filtering. However, it can be challenging to keep the temperature of the sources stable over time, particularly in a real-world setting, meaning photon sources can become distinguishable. In this work, we present an experimental demonstration of a QKD system capable of achieving spectral indistinguishability, over a 10 degrees C range, using a combination of broadband sources, super-luminescent light emitting diodes (SLEDs), along with a narrow band-pass filter. The temperature stability could be useful in a satellite implementation, where there may be temperature gradients over the payload, particularly on a CubeSat.Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
页码:15145 / 15155
页数:11
相关论文
共 35 条
[1]   Practical Side-Channel Attack on Free-Space QKD Systems With Misaligned Sources and Countermeasures [J].
Arteaga-Diaz, Pablo ;
Cano, Daniel ;
Fernandez, Veronica .
IEEE ACCESS, 2022, 10 :82697-82705
[2]   Stable, low-error, and calibration-free polarization encoder for free-space quantum communication [J].
Avesani, Marco ;
Agnesi, Costantino ;
Stanco, Andrea ;
Vallone, Giuseppe ;
Villoresi, Paolo .
OPTICS LETTERS, 2020, 45 (17) :4706-4709
[3]  
Basso Basset F., 2022, QUANTUM SCI TECHNOL
[4]   A compact free space quantum key distribution system capable of daylight operation [J].
Benton, David M. ;
Gorman, Phillip M. ;
Tapster, Paul R. ;
Taylor, David M. .
OPTICS COMMUNICATIONS, 2010, 283 (11) :2465-2471
[5]   Quantum key distribution with 1.25 Gbps clock synchronization [J].
Bienfang, JC ;
Gross, AJ ;
Mink, A ;
Hershman, BJ ;
Nakassis, A ;
Tang, X ;
Lu, R ;
Su, DH ;
Clark, CW ;
Williams, CJ ;
Hagley, EW ;
Wen, J .
OPTICS EXPRESS, 2004, 12 (09) :2011-2016
[6]   Finite-key analysis for practical implementations of quantum key distribution [J].
Cai, Raymond Y. Q. ;
Scarani, Valerio .
NEW JOURNAL OF PHYSICS, 2009, 11
[7]   LEO-to-ground polarization measurements aiming for space QKD using Small Optical TrAnsponder (SOTA) [J].
Carrasco-Casado, Alberto ;
Kunimori, Hiroo ;
Takenaka, Hideki ;
Kubo-Oka, Toshihiro ;
Akioka, Maki ;
Fuse, Tetsuharu ;
Koyama, Yoshisada ;
Kolev, Dimitar ;
Munemasa, Yasushi ;
Toyoshima, Morio .
OPTICS EXPRESS, 2016, 24 (11) :2254-2266
[8]   Handheld free space quantum key distribution with dynamic motion compensation [J].
Chun, Hyunchae ;
Choi, Iris ;
Faulkner, Grahame ;
Clarke, Larry ;
Barber, Bryan ;
George, Glenn ;
Capon, Colin ;
Niskanen, Antti ;
Wabnig, Joachim ;
O'Brien, Dominic ;
Bitauld, David .
OPTICS EXPRESS, 2017, 25 (06) :6784-6795
[9]   Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source [J].
Collins, R. J. ;
Clarke, P. J. ;
Fernandez, V. ;
Gordon, K. J. ;
Makhonin, M. N. ;
Timpson, J. A. ;
Tahraoui, A. ;
Hopkinson, M. ;
Fox, A. M. ;
Skolnick, M. S. ;
Buller, G. S. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (07)
[10]  
Donaldson R., BB84 QUANTUM KEY DIS, DOI [10.17861/c5ab78a0-ea18-4f12-b81a-831bb539b664, DOI 10.17861/C5AB78A0-EA18-4F12-B81A-831BB539B664]