Asymmetric Coordination of Iridium Single-atom IrN3O Boosting Formic Acid Oxidation Catalysis

被引:60
作者
Wang, Lei [1 ,3 ]
Ji, Bifa [1 ]
Zheng, Yongping [1 ]
Tang, Yongbing [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Adv Energy Storage Technol Res Ctr, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou 215123, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Asymmetric Coordination; Electrocatalysis; Formic Acid Oxidation; Iridium Single-Atom; HYDROGEN-PRODUCTION; OXYGEN REDUCTION; FUEL-CELLS; CARBON; NANOCATALYSTS; OPPORTUNITIES;
D O I
10.1002/anie.202301711
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rational design of the proximal coordination of an active site to achieve its optimum catalytic activity is the ultimate goal in single-atom catalysis, but still challenging. Here, we report theoretical prediction and experimental realization of an asymmetrically coordinated iridium single-atom catalyst (IrN3O) for the formic acid oxidation reaction (FAOR). Theoretical calculations reveal that the substitution of one or two nitrogen with more electronegative oxygen in the symmetric IrN4 motif splits and downshifts the Ir 5d orbitals with respect to the Fermi level, moderating the binding strength of key intermediates on IrN4-xOx (x=1, 2) sites, especially that the IrN3O motif shows ideal activity for FAOR with a near-zero overpotential. The as-designed asymmetric Ir motifs were realized by pyrolyzing Ir precursor with oxygen-rich glucose and nitrogen-rich melamine, exhibiting a mass activity of 25 and 87 times greater than those of state-of-the-art Pd/C and Pt/C, respectively.
引用
收藏
页数:7
相关论文
共 49 条
[1]  
Al-Akraa IM, 2015, INT J ELECTROCHEM SC, V10, P3282
[2]  
[Anonymous], 2017, ANGEW CHEM, V129, P13988
[3]  
[Anonymous], 2020, ANGEW CHEM, V132, P2710
[4]   Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid [J].
Bulushev, Dmitri A. ;
Zacharska, Monika ;
Lisitsyn, Alexander S. ;
Podyacheva, Olga Yu. ;
Hage, Fredrik S. ;
Ramasse, Quentin M. ;
Bangert, Ursel ;
Bulusheva, Lyubov G. .
ACS CATALYSIS, 2016, 6 (06) :3442-3451
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? [J].
Enthaler, Stephan ;
von Langermann, Jan ;
Schmidt, Thomas .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1207-1217
[7]   Formic Acid as a Hydrogen Energy Carrier [J].
Eppinger, Jorg ;
Huang, Kuo-Wei .
ACS ENERGY LETTERS, 2017, 2 (01) :188-195
[8]   Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution [J].
Feng, Chen ;
Zhang, Zhirong ;
Wang, Dongdi ;
Kong, Yuan ;
Wei, Jie ;
Wang, Ruyang ;
Ma, Peiyu ;
Li, Hongliang ;
Geng, Zhigang ;
Zuo, Ming ;
Bao, Jun ;
Zhou, Shiming ;
Zeng, Jie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (21) :9271-9279
[9]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[10]   Formic acid as a hydrogen source - recent developments and future trends [J].
Grasemann, Martin ;
Laurenczy, Gabor .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) :8171-8181