Modeling cancer's ecological and evolutionary dynamics

被引:5
作者
Bukkuri, Anuraag [1 ,4 ]
Pienta, Kenneth J. [2 ]
Hockett, Ian [2 ]
Austin, Robert H. [3 ]
Hammarlund, Emma U. [4 ]
Amend, Sarah R. [2 ]
Brown, Joel S. [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Integrated Math Oncol, Canc Biol & Evolut Program, Tampa, FL 33612 USA
[2] Johns Hopkins Sch Med, Brady Urol Inst, Baltimore, MD USA
[3] Princeton Univ, Dept Phys, Princeton, NJ USA
[4] Lund Univ, Dept Lab Med, Tissue Dev & Evolut Res Grp, Lund, Sweden
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
Eco-evolutionary dynamics; Mathematical modeling; Evolutionary game theory; Resistance; Cancer evolution; GAME-THEORY; CLONAL EVOLUTION; RESISTANCE; GROWTH; CELLS; COEVOLUTION; SELECTION; THERAPY; BIOLOGY; STROMA;
D O I
10.1007/s12032-023-01968-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In this didactic paper, we present a theoretical modeling framework, called the G-function, that integrates both the ecology and evolution of cancer to understand oncogenesis. The G-function has been used in evolutionary ecology, but has not been widely applied to problems in cancer. Here, we build the G-function framework from fundamental Darwinian principles and discuss how cancer can be seen through the lens of ecology, evolution, and game theory. We begin with a simple model of cancer growth and add on components of cancer cell competition and drug resistance. To aid in exploration of eco-evolutionary modeling with this approach, we also present a user-friendly software tool. By the end of this paper, we hope that readers will be able to construct basic G function models and grasp the usefulness of the framework to understand the games cancer plays in a biologically mechanistic fashion.
引用
收藏
页数:14
相关论文
共 109 条
[1]   Evolutionary game theory using agent-based methods [J].
Adami, Christoph ;
Schossau, Jory ;
Hintze, Arend .
PHYSICS OF LIFE REVIEWS, 2016, 19 :1-26
[2]  
Adler Frederick R, 2019, Curr Opin Syst Biol, V17, P1, DOI 10.1016/j.coisb.2019.09.001
[3]   Adaptive dynamics of unstable cancer populations: The canonical equation [J].
Aguade-Gorgorio, Guim ;
Sole, Ricard .
EVOLUTIONARY APPLICATIONS, 2018, 11 (08) :1283-1292
[4]   Cancer across the tree of life: cooperation and cheating in multicellularity [J].
Aktipis, C. Athena ;
Boddy, Amy M. ;
Jansen, Gunther ;
Hibner, Urszula ;
Hochberg, Michael E. ;
Maley, Carlo C. ;
Wilkinson, Gerald S. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 370 (1673)
[5]   Life history trade-offs in cancer evolution [J].
Aktipis, C. Athena ;
Boddy, Amy M. ;
Gatenby, Robert A. ;
Brown, Joel S. ;
Maley, Carlo C. .
NATURE REVIEWS CANCER, 2013, 13 (12) :883-892
[6]   Evolutionary foundations for cancer biology [J].
Aktipis, C. Athena ;
Nesse, Randolph M. .
EVOLUTIONARY APPLICATIONS, 2013, 6 (01) :144-159
[7]   Overlooking Evolution: A Systematic Analysis of Cancer Relapse and Therapeutic Resistance Research [J].
Aktipis, C. Athena ;
Kwan, Virginia S. Y. ;
Johnson, Kathryn A. ;
Neuberg, Steven L. ;
Maley, Carlo C. .
PLOS ONE, 2011, 6 (11)
[8]   Ecological paradigms to understand the dynamics of metastasis [J].
Amend, Sarah R. ;
Roy, Sounak ;
Brown, Joel S. ;
Pienta, Kenneth J. .
CANCER LETTERS, 2016, 380 (01) :237-242
[9]   Ecology meets cancer biology: The cancer swamp promotes the lethal cancer phenotype [J].
Amend, Sarah R. ;
Pienta, Kenneth J. .
ONCOTARGET, 2015, 6 (12) :9669-9678
[10]   Cooperation among cancer cells as public goods games on Voronoi networks [J].
Archetti, Marco .
JOURNAL OF THEORETICAL BIOLOGY, 2016, 396 :191-203