A sharp lower bound for the spectral radius in K4-saturated graphs

被引:3
作者
Kim, Jaehoon [1 ]
Kostochka, Alexandr, V [2 ,3 ]
Suil, O. [4 ]
Shi, Yongtang [5 ,6 ]
Wang, Zhiwen [6 ,7 ]
机构
[1] Korea Adv Inst Sci & Technol, Math Sci Dept, Daejeon, South Korea
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
[4] State Univ New York, Dept Appl Math & Stat, Incheon 21985, South Korea
[5] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[7] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Saturated graphs; Complete graphs; Spectral radius; EIGENVALUES;
D O I
10.1016/j.disc.2022.113231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For given graphs G and H, the graph G is H-saturated if G does not contain H as a subgraph but for any e is an element of E((G) over bar), G + e contains H. In this note, we prove that if G is an n-vertex Kr+1-saturated graph such that for each vertex v is an element of V (G), Sigma(w is an element of N(v)) d(G)(w) >= (r - 2)d(v) + (r - 1)(n - r + 1), then rho(G) >= rho(S-n,S-r), where S-n,S-r is the graph obtained from a copy of Kr-1 with vertex set S by adding n - r + 1 vertices, each of which has neighborhood S. This provides a sharp lower bound for the spectral radius in an n-vertex Kr+1-saturated graph for r = 2, 3, verifying a special case of a conjecture by Kim, Kim, Kostochka and O. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [2] A PROBLEM IN GRAPH THEORY
    ERDOS, P
    HAJNAL, A
    MOON, JW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (10) : 1107 - &
  • [3] Faudree JR, 2011, ELECTRON J COMB
  • [4] Finck H., 1965, Wiss. Z. Tech. Hochsch. Ilmenau, V11, P1
  • [5] Godsil C., 2001, Algebraic Graph Theory
  • [6] Hoffman A.J, 1960, IBM J RES DEV, V4, P497
  • [7] SPECTRAL-RADIUS AND DEGREE SEQUENCE
    HOFMEISTER, M
    [J]. MATHEMATISCHE NACHRICHTEN, 1988, 139 : 37 - 44
  • [8] The minimum spectral radius of Kr+1-saturated graphs
    Kim, Jaehoon
    Kim, Seog-Jin
    Kostochka, Alexandr, V
    Suil, O.
    [J]. DISCRETE MATHEMATICS, 2020, 343 (11)
  • [9] The smallest eigenvalue of Kr-free graphs
    Nikiforov, V
    [J]. DISCRETE MATHEMATICS, 2006, 306 (06) : 612 - 616
  • [10] Bounds on graph eigenvalues II
    Nikiforov, Vladimir
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) : 183 - 189