Z4R-additive cyclic and constacyclic codes and MDSS codes

被引:0
作者
Ghajari, Arazgol [1 ]
Khashyarmanesh, Kazem [1 ]
Abualrub, Taher [2 ]
Siap, Irfan [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159-91775, Mashhad, Razavi Khorasan, Iran
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
[3] Jacodesmath Inst, TR-34220 Istanbul, Turkey
关键词
Additive cyclic codes; generator polynomials; dual codes and additive constacyclic codes;
D O I
10.1142/S1793830922500665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the structure of Z(4)R-additive codes where Z(4) = {0, 1, 2, 3} is the well-known ring of 4 elements and R is the ring given by R = Z(4) + uZ(4) + vZ(4), where u(2) = u, v(2) = v and uv = vu = 0. We will classify all maximum distance separable codes with respect to the Singleton bound (MDSS) over Z(4)R. Then we will focus on Z(4)R-additive cyclic and constacyclic codes. We will find a unique set of generator polynomials for these codes and determine minimum spanning sets for them. We will also find the generator polynomials for the dual of any Z(4)R-additive cyclic or constacyclic code.
引用
收藏
页数:21
相关论文
共 26 条
[21]   Z4Z4Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{4}{\mathbb {Z}}_{4}{\mathbb {Z}}_{4}$$\end{document}-additive cyclic codes are asymptotically good [J].
Hai Q. Dinh ;
Bhanu Pratap Yadav ;
Sachin Pathak ;
Abhyendra Prasad ;
Ashish Kumar Upadhyay ;
Woraphon Yamaka .
Applicable Algebra in Engineering, Communication and Computing, 2024, 35 (4) :485-505
[22]   On ZprZpsZpt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{p^r} \mathbb {Z}_{p^s} \mathbb {Z}_{p^t}$$\end{document}-additive cyclic codes exhibit asymptotically good properties [J].
Mousumi Ghosh ;
Sachin Pathak ;
Dipendu Maity .
Cryptography and Communications, 2024, 16 (6) :1559-1580
[23]   Optimal binary codes derived from F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2} \mathbb {F}_4$$\end{document}-additive cyclic codes [J].
Taher Abualrub ;
Nuh Aydin ;
Ismail Aydogdu .
Journal of Applied Mathematics and Computing, 2020, 64 (1-2) :71-87
[24]   ℤpℤps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{p}\mathbb {Z}_{p^{s}}$\end{document}-additive cyclic codes are asymptotically good [J].
Ting Yao ;
Shixin Zhu .
Cryptography and Communications, 2020, 12 (2) :253-264
[25]   ZpZp[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pmb {{\mathbb {Z}}}}_p{\pmb {{\mathbb {Z}}}}_p[v]$$\end{document}-additive cyclic codes are asymptotically good [J].
Xiaotong Hou ;
Jian Gao .
Journal of Applied Mathematics and Computing, 2021, 66 (1-2) :871-884