Z4R-additive cyclic and constacyclic codes and MDSS codes

被引:0
作者
Ghajari, Arazgol [1 ]
Khashyarmanesh, Kazem [1 ]
Abualrub, Taher [2 ]
Siap, Irfan [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159-91775, Mashhad, Razavi Khorasan, Iran
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
[3] Jacodesmath Inst, TR-34220 Istanbul, Turkey
关键词
Additive cyclic codes; generator polynomials; dual codes and additive constacyclic codes;
D O I
10.1142/S1793830922500665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the structure of Z(4)R-additive codes where Z(4) = {0, 1, 2, 3} is the well-known ring of 4 elements and R is the ring given by R = Z(4) + uZ(4) + vZ(4), where u(2) = u, v(2) = v and uv = vu = 0. We will classify all maximum distance separable codes with respect to the Singleton bound (MDSS) over Z(4)R. Then we will focus on Z(4)R-additive cyclic and constacyclic codes. We will find a unique set of generator polynomials for these codes and determine minimum spanning sets for them. We will also find the generator polynomials for the dual of any Z(4)R-additive cyclic or constacyclic code.
引用
收藏
页数:21
相关论文
共 25 条
  • [11] ZpZps -additive cyclic codes are asymptotically good
    Yao, Ting
    Zhu, Shixin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (02): : 253 - 264
  • [12] Asymptotically Good Additive Cyclic Codes Exist
    Shi, Minjia
    Wu, Rongsheng
    Sole, Patrick
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (10) : 1980 - 1983
  • [13] Some Results on Triple Cyclic Codes over Z4
    Wu, Tingting
    Gao, Jian
    Fu, Fang-Wei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (05) : 998 - 1004
  • [14] SOME RESULTS ON ZpZp[v]-ADDITIVE CYCLIC CODES
    Diao, Lingyu
    Gao, Jian
    Lu, Jiyong
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (04) : 555 - 572
  • [15] On ZprZpsZpt -additive cyclic codes exhibit asymptotically good properties
    Ghosh, Mousumi
    Pathak, Sachin
    Maity, Dipendu
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (06): : 1559 - 1580
  • [16] Generalized cyclotomic numbers and cyclic codes of prime power length over Z4
    Batra, Sudhir
    Jain, Sonal
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (05)
  • [17] (F2 + uF2)(F4 + uF4)-Additive Cyclic Codes
    Lu, Jiyong
    IEEE ACCESS, 2022, 10 : 19112 - 19116
  • [18] Zp(Zp + uZp + u2Zp)-additive cyclic codes
    Ghajari, Arazgol
    Khashyarmanesh, Kazem
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (03): : 337 - 354
  • [19] Binary Optimal Codes from Z2[u]Z2[u,v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2}[u]{\mathbb {Z}}_{2}[u,v]$$\end{document}-Additive Cyclic and Additive Constacyclic Codes
    Mohd Asim
    Mohammad Ashraf
    Ghulam Mohammad
    Washiqur Rehman
    Naim Khan
    Iranian Journal of Science, 2025, 49 (3) : 697 - 709
  • [20] Z4Z4Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{4}{\mathbb {Z}}_{4}{\mathbb {Z}}_{4}$$\end{document}-additive cyclic codes are asymptotically good
    Hai Q. Dinh
    Bhanu Pratap Yadav
    Sachin Pathak
    Abhyendra Prasad
    Ashish Kumar Upadhyay
    Woraphon Yamaka
    Applicable Algebra in Engineering, Communication and Computing, 2024, 35 (4) : 485 - 505