Z4R-additive cyclic and constacyclic codes and MDSS codes

被引:0
|
作者
Ghajari, Arazgol [1 ]
Khashyarmanesh, Kazem [1 ]
Abualrub, Taher [2 ]
Siap, Irfan [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159-91775, Mashhad, Razavi Khorasan, Iran
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
[3] Jacodesmath Inst, TR-34220 Istanbul, Turkey
关键词
Additive cyclic codes; generator polynomials; dual codes and additive constacyclic codes;
D O I
10.1142/S1793830922500665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the structure of Z(4)R-additive codes where Z(4) = {0, 1, 2, 3} is the well-known ring of 4 elements and R is the ring given by R = Z(4) + uZ(4) + vZ(4), where u(2) = u, v(2) = v and uv = vu = 0. We will classify all maximum distance separable codes with respect to the Singleton bound (MDSS) over Z(4)R. Then we will focus on Z(4)R-additive cyclic and constacyclic codes. We will find a unique set of generator polynomials for these codes and determine minimum spanning sets for them. We will also find the generator polynomials for the dual of any Z(4)R-additive cyclic or constacyclic code.
引用
收藏
页数:21
相关论文
共 25 条
  • [1] ON Z4Z4[u3]-ADDITIVE CONSTACYCLIC CODES
    Prakash, Om
    Yadav, Shikha
    Islam, Habibul
    Sole, Patrick
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 246 - 261
  • [2] Z2Z4-Additive Cyclic Codes
    Abualrub, Taher
    Siap, Irfan
    Aydin, Nuh
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1508 - 1514
  • [3] The study of ZpZp[u, v]-additive cyclic codes and their application in obtaining Optimal and MDSS codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 19 - 44
  • [4] Z2Z2Z4-ADDITIVE CYCLIC CODES
    Wu, Tingting
    Gao, Jian
    Gao, Yun
    Fu, Fang-Wei
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (04) : 641 - 657
  • [5] On double cyclic codes over Z4
    Gao, Jian
    Shi, Minjia
    Wu, Tingting
    Fu, Fang-Wei
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 233 - 250
  • [6] Applications of Z2 Z2 [ u ] Z2 [ uk ]- additive cyclic codes in the construction of optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Guenda, Kenza
    FILOMAT, 2024, 38 (17) : 6271 - 6290
  • [7] On Z2Z2[u]Z2[u, v]-additive cyclic codes and their application in obtaining optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Khan, Naim
    FILOMAT, 2024, 38 (08) : 2899 - 2914
  • [8] ZprZpsZpt-ADDITIVE CYCLIC CODES
    Molaei, Raziyeh
    Khashyarmanesh, Kazem
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (05) : 1195 - 1215
  • [9] Asymptotically Good Additive Cyclic Codes
    Yao, Ting
    Zhu, Shixin
    Kai, Xiaoshan
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (05) : 859 - 864
  • [10] On Z2Z2[u3]-Additive Cyclic and Complementary Dual Codes
    Hou, Xiaotong
    Meng, Xiangrui
    Gao, Jian
    IEEE ACCESS, 2021, 9 : 65914 - 65924