Diffusion of tangential tensor fields: numerical issues and influence of geometric properties

被引:2
作者
Bachini, Elena [1 ]
Brandner, Philip [2 ]
Jankuhn, Thomas [2 ]
Nestler, Michael [1 ]
Praetorius, Simon [1 ]
Reusken, Arnold [2 ]
Voigt, Axel [1 ]
机构
[1] Tech Univ Dresden, Inst Wissenschaftl Rechnen, D-01062 Dresden, Germany
[2] Rhein Westfal TH Aachen, Inst Geometr & Prakt Math, D-52056 Aachen, Germany
关键词
finite elements; surface heat equation; tangential tensor fields; FINITE-ELEMENT METHODS; ORDER; SURFACES; DISCRETIZATION; EQUATION; VECTOR; PDES;
D O I
10.1515/jnma-2022-0088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the diffusion of tangential tensor-valued data on curved surfaces. For this purpose, several finite-element-based numerical methods are collected and used to solve a tangential surface n-tensor heat flow problem. These methods differ with respect to the surface representation used, the geometric information required, and the treatment of the tangentiality condition. We emphasize the importance of geometric properties and their increasing influence as the tensorial degree changes from n = 0 to n >= 1. A specific example is presented that illustrates how curvature drastically affects the behavior of the solution.
引用
收藏
页码:55 / 75
页数:21
相关论文
共 34 条
[1]   Intrinsic finite element method for advection-diffusion-reaction equations on surfaces [J].
Bachini, Elena ;
Farthing, Matthew W. ;
Putti, Mario .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 424
[2]   The DUNE framework: Basic concepts and recent developments [J].
Bastian, Peter ;
Blatt, Markus ;
Dedner, Andreas ;
Dreier, Nils-Arne ;
Engwer, Christian ;
Fritze, Rene ;
Graeser, Carsten ;
Grueninger, Christoph ;
Kempf, Dominic ;
Kloefkorn, Robert ;
Ohlberger, Mario ;
Sander, Oliver .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :75-112
[3]  
BONITO A., 2020, GEOMETRIC PARTIAL DI, V21, P1
[4]   A DIVERGENCE-CONFORMING FINITE ELEMENT METHOD FOR THE SURFACE STOKES EQUATION [J].
Bonito, Andrea ;
Demlow, Alan ;
Licht, Martin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) :2764-2798
[5]   FINITE ELEMENT DISCRETIZATION METHODS FOR VELOCITY-PRESSURE AND STREAM FUNCTION FORMULATIONS OF SURFACE STOKES EQUATIONS [J].
Brandner, Philip ;
Jankuhn, Thomas ;
Praetorius, Simon ;
Reusken, Arnold ;
Voigt, Axel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04) :A1807-A1832
[6]  
Burman E., 2018, MATH MODELL NUMER AN, V52, P2247, DOI [DOI 10.1051/M2AN/2018038, DOI 10.1051/m2an/2018038]
[7]   Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods [J].
Claudel, Christian G. ;
Bayen, Alexandre M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (05) :1158-1174
[8]   Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow [J].
Crane, Keenan ;
Weischedel, Clarisse ;
Wardetzky, Max .
ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (05)
[9]   HIGHER-ORDER FINITE ELEMENT METHODS AND POINTWISE ERROR ESTIMATES FOR ELLIPTIC PROBLEMS ON SURFACES [J].
Demlow, Alan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :805-827
[10]   Finite element methods for surface PDEs [J].
Dziuk, Gerhard ;
Elliott, Charles M. .
ACTA NUMERICA, 2013, 22 :289-396