Branching Brownian motion conditioned on small maximum

被引:2
作者
Chen, Xinxin [1 ]
He, Hui [1 ]
Mallein, Bastien [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Sorbonne Paris Nord, LAGA, UMR 7539, F-93430 Villetaneuse, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2023年 / 20卷 / 02期
关键词
Branching Brownian motion; lower deviation probability; extremal process; point process; ENTROPIC REPULSION; EQUATION; CONVERGENCE; LAW;
D O I
10.30757/ALEA.v20-33
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a standard binary branching Brownian motion on the real line, it is known that the typical value of the maximal position M-t among all particles alive at time t is m(t) + Theta(1) with m(t) = root 2t - 3/2 root 2 log t. Further, it is proved independently in Aidekon et al. (2013) and Arguin et al. (2013) that the branching Brownian motion shifted by m(t) (or M-t) converges in law to some decorated Poisson point process. The goal of this work is to study the branching Brownian motion conditioned on M-t << m(t). We give a complete description of the limiting extremal process conditioned on {M-t <= root 2 alpha t} with alpha < 1, which reveals a phase transition at alpha = 1 - root 2. We also verify the conjecture of Derrida and Shi (2017b) on the precise asymptotic behaviour of P(M-t <= root 2 alpha t) for alpha < 1.
引用
收藏
页码:905 / 940
页数:36
相关论文
共 50 条
[21]   THE GENEALOGY OF BRANCHING BROWNIAN MOTION WITH ABSORPTION [J].
Berestycki, Julien ;
Berestycki, Nathanael ;
Schweinsberg, Jason .
ANNALS OF PROBABILITY, 2013, 41 (02) :527-618
[22]   Branching Brownian Motion with Catalytic Branching at the Origin [J].
Bocharov, Sergey ;
Harris, Simon C. .
ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) :201-228
[23]   Branching Brownian motion with an inhomogeneous breeding potential [J].
Harris, J. W. ;
Harris, S. C. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :793-801
[24]   An ergodic theorem for the frontier of branching Brownian motion [J].
Arguin, Louis-Pierre ;
Bovier, Anton ;
Kistler, Nicola .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-25
[25]   Branching Brownian motion under soft killing [J].
Oz, Mehmet .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 :491-515
[26]   Fisher-KPP equation with small data and the extremal process of branching Brownian motion [J].
Mytnik, Leonid ;
Roquejoffre, Jean-Michel ;
Ryzhik, Lenya .
ADVANCES IN MATHEMATICS, 2022, 396
[27]   Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift [J].
Berestycki, Julien ;
Brunet, Eric ;
Harris, Simon C. ;
Milos, Piotr .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (06) :2107-2143
[28]   BRANCHING BROWNIAN MOTION WITH SPATIALLY HOMOGENEOUS AND POINT-CATALYTIC BRANCHING [J].
Bocharov, Sergey ;
Wang, Li .
JOURNAL OF APPLIED PROBABILITY, 2019, 56 (03) :891-917
[29]   1-STABLE FLUCTUATIONS IN BRANCHING BROWNIAN MOTION AT CRITICAL TEMPERATURE I: THE DERIVATIVE MARTINGALE [J].
Maillard, Pascal ;
Pain, Michel .
ANNALS OF PROBABILITY, 2019, 47 (05) :2953-3002
[30]   Branching Brownian motion in a periodic environment and existence of pulsating traveling waves* [J].
Ren, Yan-Xia ;
Song, Renming ;
Yang, Fan .
ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28 :1-50