Stability analysis of the singular points and Hopf bifurcations of a tumor growth control model

被引:1
|
作者
Drexler, Daniel Andras [1 ]
Nagy, Ilona [2 ,6 ]
Romanovski, Valery G. [3 ,4 ,5 ]
机构
[1] Obuda Univ, Physiol Controls Res Ctr, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Budapest, Hungary
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Maribor, Slovenia
[5] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[6] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Muegyetem Rkp 3, H-1111 Budapest, Hungary
基金
欧盟地平线“2020”;
关键词
bifurcation; cancer therapy; limit cycle; singular point; tumor control; tumor therapy;
D O I
10.1002/mma.9885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out qualitative analysis of a fourth-order tumor growth control model using ordinary differential equations. We show that the system has one positive equilibrium point, and its stability is independent of the feedback gain. Using a Lyapunov function method, we prove that there exist realistic parameter values for which the systems admit limit cycle oscillations due to a supercritical Hopf bifurcation. The time evolution of the state variables is also represented.
引用
收藏
页码:5677 / 5691
页数:15
相关论文
共 50 条
  • [41] ON THE STABILITY OF NUMERICAL-METHODS OF HOPF POINTS USING BACKWARD ERROR ANALYSIS
    REDDIEN, GW
    COMPUTING, 1995, 55 (02) : 163 - 180
  • [42] Stability and Hopf bifurcation analysis in a TCP fluid model
    Liu, Feng
    Guan, Zhi-Hong
    Wang, Hua O.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 353 - 363
  • [43] Stability and Hopf Bifurcation Analysis of a Delayed SEIS Model
    Reddy, Madhusudhan K.
    Narayan, Lakshmi K.
    Reddy, Ravindra B.
    INTERNATIONAL JOURNAL OF ECOLOGY & DEVELOPMENT, 2021, 36 (01) : 82 - 90
  • [44] Hopf Bifurcations in a Mathematical Model for Economic Growth, Corruption, and Unemployment: Computation of Economic Limit Cycles
    Ifeacho, Ogochukwu
    Gonzalez-Parra, Gilberto
    AXIOMS, 2025, 14 (03)
  • [45] Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis
    Colli, Pierluigi
    Signori, Andrea
    Sprekels, Juergen
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [46] Stability and Hopf Bifurcation Analysis on a Bazykin Model with Delay
    Zhang, Jianming
    Zhang, Lijun
    Khalique, Chaudry Masood
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [47] Stability and Hopf bifurcation analysis in a delay Swarms model
    Liu Feng
    Yin Xiang
    Ling Guang
    Guan Zhi-Hong
    Hua O, Wang
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1049 - 1053
  • [48] The stability and Hopf bifurcation analysis of a gene expression model
    Zhang, Tonghua
    Song, Yongli
    Zang, Hong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 103 - 113
  • [49] Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior
    Tang, Xiaosong
    Song, Yongli
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 375 - 391
  • [50] STABILITY AND HOPF BIFURCATION ANALYSIS OF A DISTRIBUTED TIME DELAY ENERGY MODEL FOR SUSTAINABLE ECONOMIC GROWTH
    Ferrara, Massimiliano
    Gangemi, Mariangela
    Guerrini, Luca
    Pansera, Bruno A.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2020, 98 (01):