Kernel Probabilistic Dependent-Independent Canonical Correlation Analysis

被引:0
|
作者
Rohani Sarvestani, Reza [1 ]
Gholami, Ali [2 ]
Boostani, Reza [3 ]
机构
[1] Shahrekord Univ, Dept Comp Engn, Shahrekord, Iran
[2] Islamic Azad Univ, Fac Technol & Engn, Dept Elect Engn, Tehran Branch, Tehran, Iran
[3] Shiraz Univ, ECE Fac, CSE & IT Dept, Shiraz, Iran
关键词
RECOGNITION; FUSION;
D O I
10.1155/2024/7393431
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is growing interest in developing linear/nonlinear feature fusion methods that fuse the elicited features from two different sources of information for achieving a higher recognition rate. In this regard, canonical correlation analysis (CCA), cross-modal factor analysis, and probabilistic CCA (PCCA) have been introduced to better deal with data variability and uncertainty. In our previous research, we formerly developed the kernel version of PCCA (KPCCA) to capture both nonlinear and probabilistic relation between the features of two different source signals. However, KPCCA is only able to estimate latent variables, which are statistically correlated between the features of two independent modalities. To overcome this drawback, we propose a kernel version of the probabilistic dependent-independent CCA (PDICCA) method to capture the nonlinear relation between both dependent and independent latent variables. We have compared the proposed method to PDICCA, CCA, KCCA, cross-modal factor analysis (CFA), and kernel CFA methods over the eNTERFACE and RML datasets for audio-visual emotion recognition and the M2VTS dataset for audio-visual speech recognition. Empirical results on the three datasets indicate the superiority of both the PDICCA and Kernel PDICCA methods to their counterparts.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Deep Probabilistic Canonical Correlation Analysis
    Karami, Mahdi
    Schuurmans, Dale
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8055 - 8063
  • [2] A label embedding kernel method for multi-view canonical correlation analysis
    Su, Shuzhi
    Ge, Hongwei
    Yuan, Yun-Hao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (12) : 13785 - 13803
  • [3] Bimodal Emotion Recognition using Kernel Canonical Correlation Analysis and Multiple Kernel Learning
    Yan, Jingjie
    Qiu, Wei
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [4] Two-Directional Two-Dimensional Kernel Canonical Correlation Analysis
    Gao, Xizhan
    Niu, Sijie
    Sun, Quansen
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (11) : 1578 - 1582
  • [5] Cost-sensitive transfer kernel canonical correlation analysis for heterogeneous defect prediction
    Li, Zhiqiang
    Jing, Xiao-Yuan
    Wu, Fei
    Zhu, Xiaoke
    Xu, Baowen
    Ying, Shi
    AUTOMATED SOFTWARE ENGINEERING, 2018, 25 (02) : 201 - 245
  • [6] A kernel canonical correlation analysis approach for removing environmental and operational variations for structural damage identification
    Huang, Jie-zhong
    Yuan, Si-Jie
    Li, Dong-sheng
    Li, Hong-nan
    JOURNAL OF SOUND AND VIBRATION, 2023, 548
  • [7] Specific Emitter Identification through Multi-Domain Mixed Kernel Canonical Correlation Analysis
    Chen, Jian
    Li, Shengyong
    Qi, Jianchi
    Li, Hongke
    ELECTRONICS, 2024, 13 (07)
  • [8] A Survey on Canonical Correlation Analysis
    Yang, Xinghao
    Liu, Weifeng
    Liu, Wei
    Tao, Dacheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2349 - 2368
  • [9] Locality Discriminative Canonical Correlation Analysis For Kinship Verification
    Lei, Xiaohui
    Li, Bo
    Xie, Jing
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1870 - 1874
  • [10] Sparsity Preserving Canonical Correlation Analysis
    Zu, Chen
    Zhang, Daoqiang
    PATTERN RECOGNITION, 2012, 321 : 56 - 63