OKR-Net: Overlapping Keypoints Registration Network for Large-Scale LiDAR Point Clouds

被引:0
|
作者
Wang, Zijian [1 ]
Xu, Xiaosu [1 ]
Yao, Yiqing [1 ]
Li, Nuo [1 ]
Liu, Yehao [1 ]
机构
[1] Southeast Univ, Minist Educ, Sch Instrument Sci & Engn, Key Lab Microinertial Instrument & Adv Nav Techno, Nanjing 210096, Peoples R China
关键词
Point cloud compression; Feature extraction; Three-dimensional displays; Estimation; Task analysis; Detectors; Robustness; Deep learning for visual perception; mapping; range sensing;
D O I
10.1109/LRA.2023.3342670
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Point cloud registration is a fundamental task in various intelligence applications, including simultaneous localization and mapping as well as scene reconstruction. However, in large-scale scenes, the majority of point clouds exhibit partial overlap, posing a significant challenge to the registration process. This study introduces a registration network, named OKR-Net, specifically designed to efficiently align partially overlapping point clouds. The OKR-Net comprises two innovative modules: a joint estimation module adept at identifying the keypoints within the overlapping region; and a coarse-to-fine registration module designed to aggregate the overlap and descriptor information, thereby reducing the outliers and yielding robust corresponding point pairs. In addition, an overlap labeling method for generated keypoints is introduced. The efficiency of the proposed registration network is validated utilizing two large-scale outdoor datasets: KITTI and NuScenes. The results demonstrate that the proposed method outperforms existing global registration methods, encompassing both classical and learning-based methods in real-world scenarios.
引用
收藏
页码:1254 / 1261
页数:8
相关论文
共 50 条
  • [1] An Unsupervised Learning Network for Large-Scale LiDAR Point Clouds Registration
    Liu, Jingbin
    Lv, Xuanfan
    Gong, Xiaodong
    Liang, Yifan
    Hyyppa, Juha
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 16187 - 16200
  • [2] FEAR: Feature Extraction for Aerial Registration in large-scale LiDAR point clouds
    Graehling, Quinn
    Asari, Vijayan
    Varney, Nina
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2021, 2021, 11734
  • [3] Visual Analysis of Large-scale LiDAR Point Clouds
    Luo, Wanbo
    Zhang, Hui
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2487 - 2492
  • [4] Rethinking of learning-based 3D keypoints detection for large-scale point clouds registration
    Liu, ShaoCong
    Wang, Tao
    Zhang, Yan
    Zhou, Ruqin
    Dai, Chenguang
    Zhang, Yongsheng
    Lei, Haozhen
    Wang, Hanyun
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [5] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration
    Lu, Fan
    Chen, Guang
    Liu, Yinlong
    Zhang, Lijun
    Qu, Sanqing
    Liu, Shu
    Gu, Rongqi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15994 - 16003
  • [6] Sparse-to-Dense Matching Network for Large-Scale LiDAR Point Cloud Registration
    Lu, Fan
    Chen, Guang
    Liu, Yinlong
    Zhan, Yibing
    Li, Zhijun
    Tao, Dacheng
    Jiang, Changjun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11270 - 11282
  • [7] FlyCore: Fast Low-Frequency Coarse Registration of Large-Scale Outdoor LiDAR Point Clouds
    Li, Zikuan
    Zhang, Kaijun
    Wang, Zhoutao
    Wu, Sibo
    Zhang, Xiao-Ping
    Wei, Mingqiang
    Wang, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [8] Fine scale image registration in large-scale urban LIDAR point sets
    Guislain, Maximilien
    Digne, Julie
    Chaine, Raphaelle
    Monnier, Gilles
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 157 : 90 - 102
  • [9] Large-scale inventory in natural forests with mobile LiDAR point clouds
    Shao, Jinyuan
    Lin, Yi-Chun
    Wingren, Cameron
    Shin, Sang-Yeop
    Fei, William
    Carpenter, Joshua
    Habib, Ayman
    Fei, Songlin
    SCIENCE OF REMOTE SENSING, 2024, 10
  • [10] TOWARDS ACCURATE INSTANCE SEGMENTATION IN LARGE-SCALE LIDAR POINT CLOUDS
    Xiang, Binbin
    Peters, Torben
    Kontogianni, Theodora
    Vetterli, Frawa
    Puliti, Stefano
    Astrup, Rasmus
    Schindler, Konrad
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 605 - 612