Ammonia combustion in furnaces: A review

被引:52
|
作者
Valera-Medina, A. [1 ]
Vigueras-Zuniga, M. O. [2 ]
Shi, H. [1 ]
Mashruk, S. [1 ]
Alnajideen, M. [1 ]
Alnasif, A. [1 ,3 ]
Davies, J. [1 ]
Wang, Y. [4 ,5 ]
Zhu, X. [4 ]
Yang, W. [6 ]
Cheng, Y. B. [4 ,5 ]
机构
[1] Cardiff Univ, Coll Phys Sci & Engn, Cardiff, Wales
[2] Univ Veracruzana, Veracruz, Mexico
[3] Al Furat Al Awsat Tech Univ, Engn Tech Coll Al Najaf, Najaf, Iraq
[4] Foshan Xianhu Lab, Foshan, Guangdong, Peoples R China
[5] Wuhan Univ Technol, Wuhan, Peoples R China
[6] Korea Inst Ind Technol, Cheonan, South Korea
基金
英国工程与自然科学研究理事会;
关键词
Ammonia combustion; Furnaces; Co-firing; NOx emissions; EMISSION CHARACTERISTICS; GOVERNMENT SUBSIDIES; KINETIC MECHANISM; RENEWABLE ENERGY; NO FORMATION; HYDROGEN; STABILITY; EFFICIENT; IMPACT; FLAMES;
D O I
10.1016/j.ijhydene.2023.10.241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia is a formidable chemical that has been investigated over 150 years for its use in the chemical processing field. The potential of the molecule to be used in farming applications has enabled a demographic explosion whilst its implementation in refrigeration technologies ensure continuous operation of cooling systems at high efficiencies. Other areas have also benefited from ammonia, whilst the use of the molecule in fuelling applications was scarce until the 2010s. A combination of factors that include climate change and energy dependency have reignited the interest of using ammonia as an energy vector that can potentially support applications that range from small devices to large power applications, thus supporting the transition to a net zero economy. Therefore, ammonia appears as a tangible option towards the reduction of emissions that can support a truly carbon-free energy transition in the coming years. As the recognition of the molecule increases, research areas based on combustion processes have also expanded towards the utilization of ammonia. The research around the topic has considerably augmented not only in the academic community, but also across governmental institutions and industrial consortia willing to demonstrate the potential of such a chemical. Therefore, this review approaches the latest findings and state-of-the-art research on the use of ammonia as a combustion fuel for furnaces. Different to other reviews, the present work attempts to gather the latest fundamental research, the most critical technologies evaluating ammonia for system operation, and novel approaches that suggest various breakthrough concepts that will ensure the reliable, cleaner consumption of the molecule as furnace fuel. Further, the present manuscript includes the latest research from all corners of the world, in an attempt to summarise the extensive work that dozens of groups are currently conducting. Finally, future trends and requirements are also addressed, providing guidance to those interested in doing research and development in ammonia-fuelling systems.
引用
收藏
页码:1597 / 1618
页数:22
相关论文
共 50 条
  • [21] Role of methane in ammonia combustion in air: From microscale to macroscale
    Wang, Jing
    Huang, Fuquan
    Wang, Xinyan
    Jiang, Xi Zhuo
    Luo, Kai H.
    FUEL PROCESSING TECHNOLOGY, 2024, 256
  • [22] A Review on Combustion Characteristics of Ammonia as a Carbon-Free Fuel
    Li, Jun
    Lai, Shini
    Chen, Danan
    Wu, Rongjun
    Kobayashi, Noriyuki
    Deng, Lisheng
    Huang, Hongyu
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [23] Mini-Review of Spray and Combustion Characteristics for Ammonia Engines
    Lu, Qiang
    Peng, Zhaoxia
    Zhou, Sida
    Zhang, Bo
    Chen, Haie
    Yang, Shichun
    ENERGY & FUELS, 2024, 38 (20) : 19156 - 19173
  • [24] Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia
    Tang, Guang
    Jin, Pengfei
    Bao, Yulei
    Chai, Wai Siong
    Zhou, Lei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (39) : 20765 - 20776
  • [25] Advancements in turbulent combustion of ammonia-based fuels: A review
    Wang, Yijun
    Wang, Xujiang
    Zeng, Weilin
    Wang, Wenlong
    Song, Zhanlong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 1332 - 1355
  • [26] Numerical study on effect of oxygen content in combustion air on ammonia combustion
    Li, Jun
    Huang, Hongyu
    Kobayashi, Noriyuki
    He, Zhaohong
    Osaka, Yugo
    Zeng, Tao
    ENERGY, 2015, 93 : 2053 - 2068
  • [27] Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets
    Kikuchi, Kenta
    Murai, Ryuichi
    Hori, Tsukasa
    Akamatsu, Fumiteru
    PROCESSES, 2022, 10 (01)
  • [28] Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine
    Wang, Yang
    Zhou, Xiaohu
    Liu, Long
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (28) : 14805 - 14812
  • [29] Numerical investigation of premixed methane-ammonia combustion in a mesoscale porous combustor
    Tolouei, Ali
    Gharehghani, Ayat
    FUEL, 2024, 366
  • [30] Flame and emission characteristics of preheated ammonia combustion based on chemical reaction network
    Chen, Yifeng
    Su, Yi
    Sui, Chunjie
    Chen, Wei
    Zhang, Bin
    FUEL PROCESSING TECHNOLOGY, 2023, 242