A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow

被引:6
作者
van den Brand, Jan [1 ]
Chen, Li [1 ]
Peng, Richard [2 ]
Kyng, Rasmus [3 ]
Liu, Yang P. [4 ]
Gutenberg, Maximilian Probst [3 ]
Sachdeva, Sushant [5 ]
Sidford, Aaron [6 ,7 ]
机构
[1] Georgia Tech, Sch Comp Sci, Atlanta, GA 30332 USA
[2] Univ Waterloo, Sch Comp Sci, Waterloo, ON, Canada
[3] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[4] Stanford Univ, Dept Math, Palo Alto, CA USA
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] Stanford Univ, Dept Management Sci & Engn, Palo Alto, CA USA
[7] Stanford Univ, Dept Comp Sci, Palo Alto, CA USA
来源
2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS | 2023年
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
Maximum flow; Minimum cost flow; Data structures; Interior point methods; Convex optimization; Derandomization; MAXIMUM-FLOW; APPROXIMATION;
D O I
10.1109/FOCS57990.2023.00037
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a deterministic m(1+o(1)) time algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with m edges and polynomially bounded integral demands, costs, and capacities. As a consequence, we obtain the first running time improvement for deterministic algorithms that compute maximum-flow in graphs with polynomial bounded capacities since the work of Goldberg-Rao [J.ACM '98]. Our algorithm builds on the framework of Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva [FOCS '22] that computes an optimal flow by computing a sequence of m(1+o(1))-approximate undirected minimum-ratio cycles. We develop a deterministic dynamic graph data-structure to compute such a sequence of minimum-ratio cycles in an amortized m(o(1)) time per edge update. Our key technical contributions are deterministic analogues of the vertex sparsification and edge sparsification components of the data-structure from Chen et al. For the vertex sparsification component, we give a method to avoid the randomness in Chen et al. which involved sampling random trees to recurse on. For the edge sparsification component, we design a deterministic algorithm that maintains an embedding of a dynamic graph into a sparse spanner. We also show how our dynamic spanner can be applied to give a deterministic data structure that maintains a fully dynamic low-stretch spanning tree on graphs with polynomially bounded edge lengths, with subpolynomial average stretch and subpolynomial amortized time per edge update.
引用
收藏
页码:503 / 514
页数:12
相关论文
共 81 条
  • [1] Breaking the Cubic Barrier for All-Pairs Max-Flow: Gomory-Hu Tree in Nearly Quadratic Time
    Abboud, Amir
    Krauthgamer, Robert
    Li, Jason
    Panigrahi, Debmalya
    Saranurak, Thatchaphol
    Trabelsi, Ohad
    [J]. 2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 884 - 895
  • [2] Subcubic Algorithms for Gomory-Hu Tree in Unweighted Graphs
    Abboud, Amir
    Krauthgamer, Robert
    Trabelsi, Ohad
    [J]. STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 1725 - 1737
  • [3] USING PETAL-DECOMPOSITIONS TO BUILD A LOW STRETCH SPANNING TREE
    Abraham, Ittai
    Neiman, Ofer
    [J]. SIAM JOURNAL ON COMPUTING, 2019, 48 (02) : 227 - 248
  • [4] Ameranis K., 2023, arXiv
  • [5] [Anonymous], 1987, P 19 ANN ACM S THEOR, DOI 10.1145/28395.28397
  • [6] QUANTUM SPEEDUP FOR GRAPH SPARSIFICATION, CUT APPROXIMATION, AND LAPLACIAN SOLVING
    Apers, Simon
    De Wolf, Ronald
    [J]. SIAM JOURNAL ON COMPUTING, 2022, 51 (06) : 1703 - 1742
  • [7] A Combinatorial, Primal-Dual Approach to Semidefinite Programs
    Arora, Sanjeev
    Kale, Satyen
    [J]. STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 227 - 236
  • [8] Faster Sparse Minimum Cost Flow by Electrical Flow Localization
    Axiotis, Kyriakos
    Madry, Aleksander
    Vladu, Adrian
    [J]. 2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 528 - 539
  • [9] Circulation Control for Faster Minimum Cost Flow in Unit-Capacity Graphs
    Axiotis, Kyriakos
    Madry, Aleksander
    Vladu, Adrian
    [J]. 2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 93 - 104
  • [10] Deterministic Decremental SSSP and Approximate Min-Cost Flow in Almost-Linear Time
    Bernstein, Aaron
    Gutenberg, Maximilian Probst
    Saranurak, Thatchaphol
    [J]. 2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 1000 - 1008