Scale-wise discriminative region learning for medical image segmentation

被引:0
作者
Zhang, Jing [1 ]
Lai, Xiaoting [1 ]
Yang, Hai [1 ]
Ruan, Tong [1 ]
机构
[1] East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
基金
上海市自然科学基金;
关键词
Discriminative region; Deformable attention; Medical image segmentation; TRANSFORMER; ATTENTION;
D O I
10.1016/j.bspc.2023.105663
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Vision Transformer (ViT) has shown comparable capabilities to convolutional neural networks for medical image segmentation in recent years. However, most ViT-based models fail to effectively model long-range feature dependencies at multi-scales and ignore the crucial importance of the semantic richness of features at each scale for medical segmentation. To address this problem, we propose a novel Scale-wise Discriminative Region Learning Network (SDRL-Net) in this paper, which guides the model to focus on salient regions by differential modeling the global context relationships at each scale. In SDRL-Net, a scale-wise enhancement module is proposed to achieve more distinguishing feature representations in the encoder by concentrating spatially localized information and differentiated regional interactions simultaneously. Furthermore, we propose a multi-scale upsampling module that focuses on global multi-scale information through pyramid attention and then complements the local upsampling information to achieve better segmentation. Extensive experiments on three widely used public datasets demonstrate that our proposed SDRL-Net can perform excellently and outperform most state-of-the-art medical image segmentation methods. Code is available at https://github.com/MiniCoCo-be/SDRL-Net.
引用
收藏
页数:9
相关论文
共 52 条
  • [1] CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation
    Al-masni, Mohammed A.
    Kim, Dong-Hyun
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [3] Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network
    Cai, Sijing
    Tian, Yunxian
    Lui, Harvey
    Zeng, Haishan
    Wu, Yi
    Chen, Guannan
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (06) : 1275 - 1285
  • [4] DSTUNET: UNET WITH EFFICIENT DENSE SWIN TRANSFORMER PATHWAY FOR MEDICAL IMAGE SEGMENTATION
    Cai, Zhuotong
    Xin, Jingmin
    Shi, Peiwen
    Wu, Jiayi
    Zheng, Nanning
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [5] Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
  • [6] GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
    Cao, Yue
    Xu, Jiarui
    Lin, Stephen
    Wei, Fangyun
    Hu, Han
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1971 - 1980
  • [7] Chen J, 2021, arXiv
  • [8] Attention to Scale: Scale-aware Semantic Image Segmentation
    Chen, Liang-Chieh
    Yang, Yi
    Wang, Jiang
    Xu, Wei
    Yuille, Alan L.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3640 - 3649
  • [9] Recent advances and clinical applications of deep learning in medical image analysis
    Chen, Xuxin
    Wang, Ximin
    Zhang, Ke
    Fung, Kar-Ming
    Thai, Theresa C.
    Moore, Kathleen
    Mannel, Robert S.
    Liu, Hong
    Zheng, Bin
    Qiu, Yuchen
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 79
  • [10] A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans
    Chen, Ying
    Zheng, Cheng
    Zhou, Taohui
    Feng, Longfeng
    Liu, Lan
    Zeng, Qiao
    Wang, Guoqing
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152