Numerical study of second-grade fuzzy hybrid nanofluid flow over the exponentially permeable stretching/shrinking surface

被引:5
|
作者
Zulqarnain, Rana Muhammad [1 ]
Nadeem, Muhammad [2 ]
Siddique, Imran [2 ]
Samar, Mahvish [3 ]
Khan, Ilyas [4 ]
Mohamed, Abdullah [5 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
[3] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua, Zhejiang, Peoples R China
[4] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, Al Majmaah, Saudi Arabia
[5] Future Univ Egypt, Res Ctr, New Cairo, Egypt
关键词
second-grade fluid; exponential stretching surface; thermal radiation; hybrid nanofluid; triangular fuzzy number (TFN); BOUNDARY-LAYER-FLOW; HEAT-TRANSFER; FLUID; CHANNEL;
D O I
10.3389/fphy.2023.1301453
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of hybrid nanoliquids can aid in developing numerous advanced features that facilitate heat transmission, such as pharmaceutical processes, hybrid-powered engines, microelectronics, engine cooling, and domestic refrigerators. In the current study, a mathematical model is designed to elaborate the physical inception of an unsteady second-grade hybrid nanofluid with Al2O3-Cu/SA, a combination concentrated over the permeable exponentially heated stretching/shrinking sheet under hydromagnetic, heat source/sink, and viscous dissipation implications. The set of similarity transforms is used to convert underlying partial differential equations into the system of ordinary differential equations. The well-known homotopy analysis method is applied to tackle the formulated differential system in the MATHEMATICA program, which can obtain non-uniqueness outcomes. The imprecision of nanofluid and hybrid nanofluid volume fractions was modeled as a triangular fuzzy number [0%, 5%, 10%] for comparison. The double parametric approach was applied to deal with the fuzziness of the associated fuzzy parameters. The nonlinear ordinary differential equations are converted into fuzzy differential equations, and the homotopy analysis method is used for the fuzzy solution. In terms of code validity, our results are matched to previous findings. The features of several parameters against the velocity, surface-friction coefficient, heat transfer, and Nusselt number are described via graphs. Furthermore, the nanoparticle volume fraction magnifies the fluid temperature and retards the flow profile throughout the domain, according to our findings. Thermal profiles increase with progress in the heat source, nanoparticles volumetric fractions, viscous dissipation, and nonlinear thermal radiation. The percentage increase in the drag force and heat transfer rate are 15.18 and 5.54 when the magnetic parameter takes input in the range 0.1 <= M <= 0.3 and nanoparticle volume fraction inputs 0.01 <= phi 1 <= 0.15. From our observation, the hybrid nanofluid displays the maximum heat transfer compared to nanofluids. This important contribution will support industrial growth, particularly in the processing and manufacturing sectors.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Flow and heat transfer of hybrid nanofluid induced by an exponentially stretching/shrinking curved surface
    Wahid, Nur Syahirah
    Arifin, Norihan Md
    Khashi'ie, Najiyah Safwa
    Pop, Ioan
    Bachok, Norfifah
    Hafidzuddin, Mohd Ezad Hafidz
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 25
  • [22] Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface
    N. A. Zainal
    R. Nazar
    K. Naganthran
    I. Pop
    Neural Computing and Applications, 2021, 33 : 11285 - 11295
  • [23] Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface
    Zainal, N. A.
    Nazar, R.
    Naganthran, K.
    Pop, I.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (17): : 11285 - 11295
  • [24] Hybrid nanofluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (07) : 3497 - 3513
  • [25] Dusty Casson Nanofluid Flow with Thermal Radiation Over a Permeable Exponentially Stretching Surface
    Hussain, Syed Asif
    Ali, Gohar
    Muhammad, Sher
    Shah, Syed Inayat Ali
    Ishaq, Mohammad
    Khan, Hamid
    JOURNAL OF NANOFLUIDS, 2019, 8 (04) : 714 - 724
  • [26] Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    PHYSICA SCRIPTA, 2019, 94 (10)
  • [27] Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno's model
    Rahman, M. M.
    Rosca, A. V.
    Pop, I.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 77 : 1133 - 1143
  • [28] MHD nanofluid flow with energy transfer over a porous stretching surface by using a second-grade fluid model
    Dey, Debasish
    Borah, Rupjyoti
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023,
  • [29] Numerical investigation of magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface
    Ahmed, Kamran
    Akbar, Tanvir
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (05)
  • [30] Hybrid Nanofluid Flow over a Permeable Non-Isothermal Shrinking Surface
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    MATHEMATICS, 2021, 9 (05) : 1 - 19