Bayesian evaluation of energy dependent neutron induced fission yields

被引:2
作者
Xiao, Ming-Xiang [1 ]
Bao, Xiao-Jun [1 ]
Wei, Zheng [2 ]
Yao, Ze-En [2 ]
机构
[1] Hunan Normal Univ, Dept Phys, Changsha 410081, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian evaluation; energy dependent; neutron induced fission yields; NUCLEAR-FISSION; PRODUCT YIELDS; DISTRIBUTIONS; PREDICTIONS; FRAGMENTS; MODEL;
D O I
10.1088/1674-1137/acf7b5
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
From both the fundamental and applied perspectives, fragment mass distributions are important observables of fission. We apply the Bayesian neural network (BNN) approach to learn the existing neutron induced fission yields and predict unknowns with uncertainty quantification. Comparing the predicted results with experimental data, the BNN evaluation results are found to be satisfactory for the distribution positions and energy dependencies of fission yields. Predictions are made for the fragment mass distributions of several actinides, which may be useful for future experiments.
引用
收藏
页数:6
相关论文
共 67 条
[1]   Bimodality and charge splitting in fission of actinides [J].
Andreev, AV ;
Adamian, GG ;
Antonenko, NV ;
Ivanova, SP .
EUROPEAN PHYSICAL JOURNAL A, 2005, 26 (03) :327-332
[2]   Nuclear fission: a review of experimental advances and phenomenology [J].
Andreyev, A. N. ;
Nishio, K. ;
Schmidt, K-H .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (01)
[3]   Colloquium: Beta-delayed fission of atomic nuclei [J].
Andreyev, Andrei N. ;
Huyse, Mark ;
Van Duppen, Piet .
REVIEWS OF MODERN PHYSICS, 2013, 85 (04) :1541-1559
[4]   Fission process of nuclei at low excitation energies with a Langevin approach [J].
Aritomo, Y. ;
Chiba, S. .
PHYSICAL REVIEW C, 2013, 88 (04)
[5]   Future of nuclear fission theory [J].
Bender, Michael ;
Bernard, Remi ;
Bertsch, George ;
Chiba, Satoshi ;
Dobaczewski, Jacek ;
Dubray, Noel ;
Giuliani, Samuel A. ;
Hagino, Kouichi ;
Lacroix, Denis ;
Li, Zhipan ;
Magierski, Piotr ;
Maruhn, Joachim ;
Nazarewicz, Witold ;
Pei, Junchen ;
Peru, Sophie ;
Pillet, Nathalie ;
Randrup, Jorgen ;
Regnier, David ;
Reinhard, Paul-Gerhard ;
Robledo, Luis M. ;
Ryssens, Wouter ;
Sadhukhan, Jhilam ;
Scamps, Guillaume ;
Schunck, Nicolas ;
Simenel, Cedric ;
Skalski, Janusz ;
Stetcu, Ionel ;
Stevenson, Paul ;
Umar, Sait ;
Verriere, Marc ;
Vretenar, Dario ;
Warda, Michal ;
Aberg, Sven .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2020, 47 (11)
[6]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[7]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[8]   Colloquium: Machine learning in nuclear physics [J].
Boehnlein, Amber ;
Diefenthaler, Markus ;
Sato, Nobuo ;
Schram, Malachi ;
Ziegler, Veronique ;
Fanelli, Cristiano ;
Hjorth-Jensen, Morten ;
Horn, Tanja ;
Kuchera, Michelle P. ;
Lee, Dean ;
Nazarewicz, Witold ;
Ostroumov, Peter ;
Orginos, Kostas ;
Poon, Alan ;
Wang, Xin-Nian ;
Scheinker, Alexander ;
Smith, Michael S. ;
Pang, Long-Gang .
REVIEWS OF MODERN PHYSICS, 2022, 94 (03)
[9]   The mechanism of nuclear fission [J].
Bohr, N ;
Wheeler, JA .
PHYSICAL REVIEW, 1939, 56 (05) :426-450
[10]   FUNNY HILLS - SHELL-CORRECTION APPROACH TO NUCLEAR SHELL EFFECTS AND ITS APPLICATIONS TO FISSION PROCESS [J].
BRACK, M ;
JENSEN, AS ;
PAULI, HC ;
STRUTINSKY, VM ;
WONG, CY ;
DAMGAARD, J .
REVIEWS OF MODERN PHYSICS, 1972, 44 (02) :320-+