State estimation of a physical system with unknown governing equations

被引:27
作者
Course, Kevin [1 ]
Nair, Prasanth B. [1 ]
机构
[1] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
KALMAN FILTER; INFERENCE;
D O I
10.1038/s41586-023-06574-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
State estimation is concerned with reconciling noisy observations of a physical system with the mathematical model believed to predict its behaviour for the purpose of inferring unmeasurable states and denoising measurable ones1,2. Traditional state-estimation techniques rely on strong assumptions about the form of uncertainty in mathematical models, typically that it manifests as an additive stochastic perturbation or is parametric in nature3. Here we present a reparametrization trick for stochastic variational inference with Markov Gaussian processes that enables an approximate Bayesian approach for state estimation in which the equations governing how the system evolves over time are partially or completely unknown. In contrast to classical state-estimation techniques, our method learns the missing terms in the mathematical model and a state estimate simultaneously from an approximate Bayesian perspective. This development enables the application of state-estimation methods to problems that have so far proved to be beyond reach. Finally, although we focus on state estimation, the advancements to stochastic variational inference made here are applicable to a broader class of problems in machine learning. A parametrization strategy for stochastic variational inference with Markov Gaussian processes is presented for state estimation of a physical system whose underlying dynamical equations are partially or completely unknown.
引用
收藏
页码:261 / 267
页数:22
相关论文
共 69 条
[1]   GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asali, Y. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Babak, S. ;
Badaracco, F. .
PHYSICAL REVIEW X, 2021, 11 (02)
[2]  
[Anonymous], 1961, J BASIC ENG-T ASME, DOI [10.1115/1.3658902, DOI 10.1115/1.3658902]
[3]  
Archambeau C., 2007, P ADV NEUR INF PROC, V20
[4]  
Archambeau C., 2007, P GAUSS PROC PRACT, P1
[5]  
Barfoot T. D., 2017, State Estimation for Robotics
[6]   Exactly sparse Gaussian variational inference with application to derivative-free batch nonlinear state estimation [J].
Barfoot, Timothy D. ;
Forbes, James R. ;
Yoon, David J. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (13) :1473-1502
[7]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[8]   THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS [J].
BERKOOZ, G ;
HOLMES, P ;
LUMLEY, JL .
ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 :539-575
[9]   Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation [J].
Bocquet, Marc ;
Pires, Carlos A. ;
Wu, Lin .
MONTHLY WEATHER REVIEW, 2010, 138 (08) :2997-3023
[10]   Discovering governing equations from data by sparse identification of nonlinear dynamical systems [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3932-3937