On Erdelyi-Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces

被引:1
作者
Metwali, Mohamed M. A. [1 ]
Alsallami, Shami A. M. [2 ]
机构
[1] Damanhour Univ, Fac Sci, Dept Math & Comp Sci, Damanhour 22514, Egypt
[2] Umm Al Qura Univ, Coll Appl Sci, Dept Math Sci, Mecca 21955, Saudi Arabia
关键词
measure of noncompactness (MNC); Erdelyi-Kober's (EK) fractional operator; Orlicz spaces; fixed-point theorem (FPT); DIFFERENTIAL-EQUATIONS; EXISTENCE; PRODUCT;
D O I
10.3390/math11183901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide and prove some new fundamental properties of the Erdelyi-Kober (EK) fractional operator, including monotonicity, boundedness, acting, and continuity in both Lebesgue spaces (L-p) and Orlicz spaces (L-phi). We employ these properties with the concept of the measure of noncompactness (MNC) associated with the fixed-point hypothesis (FPT) in solving a quadratic integral equation of fractional order in L-p, p >= 1 and L-phi. Finally, we provide a few examples to support our findings. Our suppositions can be successfully applied to various fractional problems.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Periodic solutions of quadratic Weyl fractional integral equations
    Chen, Qian
    Wang, JinRong
    Chen, Fulai
    Zhang, Yuruo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) : 1945 - 1955
  • [42] Existence, uniqueness and limit property of solutions to quadratic Erd,lyi-Kober type integral equations of fractional order
    Wang, JinRong
    Zhu, Chun
    Feckan, Michal
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 779 - 791
  • [43] Solvability of the product of n-integral equations in Orlicz spaces
    Mohamed M. A. Metwali
    Kinga Cichoń
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 171 - 187
  • [44] Solvability of the product of n-integral equations in Orlicz spaces
    Metwali, Mohamed M. A.
    Cichon, Kinga
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 171 - 187
  • [45] On the Boundedness of the Fractional Maximal Operator, the Riesz Potential, and Their Commutators in Orlicz Spaces
    Aliev, A. R.
    Aliev, R. A.
    [J]. MATHEMATICAL NOTES, 2024, 115 (3-4) : 453 - 462
  • [46] Existence, attractiveness and stability of solutions for quadratic Urysohn fractional integral equations
    Wang, JinRong
    Dong, XiWang
    Zhou, Yong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 545 - 554
  • [47] ON URYSOHN-VOLTERRA FRACTIONAL QUADRATIC INTEGRAL EQUATIONS
    Darwish, Mohamed Abdalla
    Graef, John R.
    Sadarangani, Kishin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (01): : 331 - 343
  • [48] ON SOLVABILITY OF QUADRATIC HAMMERSTEIN INTEGRAL EQUATIONS IN HOLDER SPACES
    Darwish, Mohamed Abdalla
    Metwali, Mohamed M. A.
    O'Regan, Donal
    [J]. MATEMATICKI VESNIK, 2022, 74 (04): : 242 - 248
  • [49] Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the third kind
    Deringoz, Fatih
    Guliyev, Vagif S.
    Nakai, Eiichi
    Sawano, Yoshihiro
    Shi, Minglei
    [J]. POSITIVITY, 2019, 23 (03) : 727 - 757
  • [50] A novel algorithm to solve nonlinear fractional quadratic integral equations
    Talaei, Younes
    Micula, Sanda
    Hosseinzadeh, Hasan
    Noeiaghdam, Samad
    [J]. AIMS MATHEMATICS, 2022, 7 (07): : 13237 - 13257