On Erdelyi-Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces

被引:1
作者
Metwali, Mohamed M. A. [1 ]
Alsallami, Shami A. M. [2 ]
机构
[1] Damanhour Univ, Fac Sci, Dept Math & Comp Sci, Damanhour 22514, Egypt
[2] Umm Al Qura Univ, Coll Appl Sci, Dept Math Sci, Mecca 21955, Saudi Arabia
关键词
measure of noncompactness (MNC); Erdelyi-Kober's (EK) fractional operator; Orlicz spaces; fixed-point theorem (FPT); DIFFERENTIAL-EQUATIONS; EXISTENCE; PRODUCT;
D O I
10.3390/math11183901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide and prove some new fundamental properties of the Erdelyi-Kober (EK) fractional operator, including monotonicity, boundedness, acting, and continuity in both Lebesgue spaces (L-p) and Orlicz spaces (L-phi). We employ these properties with the concept of the measure of noncompactness (MNC) associated with the fixed-point hypothesis (FPT) in solving a quadratic integral equation of fractional order in L-p, p >= 1 and L-phi. Finally, we provide a few examples to support our findings. Our suppositions can be successfully applied to various fractional problems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On Solutions of Quadratic Integral Equations in Orlicz Spaces
    Cichon, Mieczyslaw
    Metwali, Mohamed M. A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 901 - 920
  • [22] On quadratic integral equations in Orlicz spaces
    Cichon, Mieczyslaw
    Metwali, Mohamed M. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) : 419 - 432
  • [23] ON IMPLICIT BOUNDARY VALUE PROBLEMS WITH CAPUTO TYPE MODIFICATION OF THE ERDELYI-KOBER FRACTIONAL DIFFERENTIAL EQUATIONS
    Boumaaza, M.
    Salim, A.
    Benchohra, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (03): : 157 - 169
  • [24] On Solutions of Quadratic Integral Equations in Orlicz Spaces
    Mieczysław Cichoń
    Mohamed M. A. Metwali
    Mediterranean Journal of Mathematics, 2015, 12 : 901 - 920
  • [25] Analysis of q-fractional coupled implicit systems involving the nonlocal Riemann-Liouville and Erdelyi-Kober q-fractional integral conditions
    Alam, Mehboob
    Khalid, Khansa Hina
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 12711 - 12734
  • [26] ON THE EXISTENCE OF SOLUTIONS FOR QUADRATIC INTEGRAL EQUATIONS IN ORLICZ SPACES
    Cichon, Mieczyslaw
    Metwali, Mohamed M. A.
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1413 - 1426
  • [27] Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdelyi-Kober integral conditions
    Baleanu, Dumitru
    Hemalatha, S.
    Duraisamy, P.
    Pandiyan, P.
    Muthaiah, Subramanian
    AIMS MATHEMATICS, 2021, 6 (12): : 13004 - 13023
  • [28] CAPUTO TYPE MODIFICATION OF THE ERDELYI-KOBER COUPLED IMPLICIT FRACTIONAL DIFFERENTIAL SYSTEMS WITH RETARDATION AND ANTICIPATION
    Boumaaza, Mokhtar
    Benchohra, Mouffak
    Nieto, Juan J.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (02): : 101 - 114
  • [29] Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann-Liouville and Erdelyi-Kober Q-Fractional Integral Conditions
    Zada, Akbar
    Alam, Mehboob
    Khalid, Khansa Hina
    Iqbal, Ramsha
    Popa, Ioan-Lucian
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [30] Numerical scheme for Erdelyi-Kober fractional diffusion equation using Galerkin-Hermite method
    Plociniczak, Lukasz
    Switala, Mateusz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1651 - 1687