Functions with Positive Differences on Convex Cones

被引:1
作者
Niculescu, Constantin P. [1 ]
Sra, Suvrit [2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] MIT, Cambridge, MA 02139 USA
关键词
Complete monotonicity; functions with positive differences; higher order convexity; positive operator; INEQUALITIES; SPACES;
D O I
10.1007/s00025-023-01987-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the role played by functions with positive differences defined on convex cones. In particular, we study functions that satisfy linear functional inequalities that extend the three-variable Hornich-Hlawka functional inequality, f (x) + f (y) + f (z) + f (x + y + z) = f (x + y) + f (y + z) + f (z + x) + f (0), especially to the case of n variables. Beyond the classical setting, we present extensions to the case of positive operators.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Extrapolation of (p, h )- convex functions
    Taki, Zakaria
    Ighachane, Mohamed Amine
    Huy, Duong Quoc
    FILOMAT, 2024, 38 (25) : 8971 - 8985
  • [42] RT-CONVEX FUNCTIONS AND THEIR APPLICATIONS
    Kashif, Muhammad
    Farid, Ghulam
    Imran, Muhammad
    Kousar, Sadia
    JOURNAL OF SCIENCE AND ARTS, 2023, (04) : 867 - 882
  • [43] On certain Schur-convex functions
    Burai, Pal
    Mako, Judit
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 89 (03): : 307 - 319
  • [44] ON A PROBLEM CONNECTED WITH STRONGLY CONVEX FUNCTIONS
    Adamek, Miroslaw
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1287 - 1293
  • [45] MINIMIZING CONVEX FUNCTIONS WITH BOUNDED PERTURBATIONS
    Hoang Xuan Phu
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2709 - 2729
  • [46] NEW INEQUALITIES OF WIRTINGER TYPE FOR CONVEX AND MN-CONVEX FUNCTIONS
    Mirkovic, Tatjana Z.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (02): : 165 - 173
  • [47] Noncommutative partially convex rational functions
    Jury, Michael
    Klep, Igor
    Mancuso, Mark E.
    McCullough, Scott
    Pascoe, James Eldred
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (03) : 731 - 759
  • [48] Exponential Convex Functions with Respect to s
    Kadakal, Mahir
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (02): : 275 - 287
  • [49] A CHARACTERIZATION OF CONVEX phi-FUNCTIONS
    Micherda, Bartosz
    OPUSCULA MATHEMATICA, 2012, 32 (01) : 171 - 178
  • [50] SOME NEW CHARACTERIZATIONS OF THE CONVEX FUNCTIONS
    Marinescu, Dan Stefan
    Monea, Mihai
    Opincariu, Mihai
    Stroe, Marian
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (02): : 349 - 356