Functions with Positive Differences on Convex Cones

被引:1
作者
Niculescu, Constantin P. [1 ]
Sra, Suvrit [2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] MIT, Cambridge, MA 02139 USA
关键词
Complete monotonicity; functions with positive differences; higher order convexity; positive operator; INEQUALITIES; SPACES;
D O I
10.1007/s00025-023-01987-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the role played by functions with positive differences defined on convex cones. In particular, we study functions that satisfy linear functional inequalities that extend the three-variable Hornich-Hlawka functional inequality, f (x) + f (y) + f (z) + f (x + y + z) = f (x + y) + f (y + z) + f (z + x) + f (0), especially to the case of n variables. Beyond the classical setting, we present extensions to the case of positive operators.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Hopf monoids, permutohedral cones, and generalized retarded functions
    Norledge, William
    Ocneanu, Adrian
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (03): : 555 - 609
  • [32] ON P-VALENTLY CLOSE-TO-CONVEX, STARLIKE AND CONVEX FUNCTIONS
    Deniz, Erhan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (05): : 635 - 642
  • [33] Lipschitz and Holder continuity results for some functions of cones
    Seeger, Alberto
    POSITIVITY, 2014, 18 (03) : 505 - 517
  • [34] CONVEX FUNCTIONS AND GENERALIZED BERNOULLI INEQUALITY
    Andrusenko, Olena
    Shevchuk, Liudmyla
    Wojcik, Pawel
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2025, 28 (01): : 137 - 142
  • [35] On a unified integral operator forφ-convex functions
    Kwun, Young Chel
    Zahra, Moquddsa
    Farid, Ghulam
    Zainab, Saira
    Kang, Shin Min
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [36] Volterra type operator on the convex functions
    Ebadian, Ali
    Sokol, Janusz
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (01): : 57 - 67
  • [37] Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities
    Canete, Antonio
    Rosales, Cesar
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (3-4) : 887 - 913
  • [38] INEQUALITIES FOR n-CONVEX FUNCTIONS
    Brnetic, Ilko
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (02): : 193 - 197
  • [39] ON TRIGONOMETRICALLY QUASI-CONVEX FUNCTIONS
    Numan, Selim
    Iscan, Imdat
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 130 - 140
  • [40] Continuity of h-convex functions
    Delavar, M. Rostamian
    Dragomir, S. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (04)