Functions with Positive Differences on Convex Cones

被引:1
作者
Niculescu, Constantin P. [1 ]
Sra, Suvrit [2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] MIT, Cambridge, MA 02139 USA
关键词
Complete monotonicity; functions with positive differences; higher order convexity; positive operator; INEQUALITIES; SPACES;
D O I
10.1007/s00025-023-01987-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the role played by functions with positive differences defined on convex cones. In particular, we study functions that satisfy linear functional inequalities that extend the three-variable Hornich-Hlawka functional inequality, f (x) + f (y) + f (z) + f (x + y + z) = f (x + y) + f (y + z) + f (z + x) + f (0), especially to the case of n variables. Beyond the classical setting, we present extensions to the case of positive operators.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Functions with Positive Differences on Convex Cones
    Constantin P. Niculescu
    Suvrit Sra
    Results in Mathematics, 2023, 78
  • [2] CONVEX CONES OF GENERALIZED MULTIPLY MONOTONE FUNCTIONS AND THE DUAL CONES
    Pinelis, Iosif
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04): : 864 - 897
  • [3] POSITIVE AND Z-OPERATORS ON CLOSED CONVEX CONES
    Orlitzky, Michael
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 444 - 458
  • [4] Minimizing Differences of Convex Functions with Applications to Facility Location and Clustering
    Nguyen Mau Nam
    Rector, R. Blake
    Giles, Daniel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (01) : 255 - 278
  • [5] Subdifferential Calculus in Abstract Convex Cones
    Stonyakin, Fedor S.
    2017 CONSTRUCTIVE NONSMOOTH ANALYSIS AND RELATED TOPICS (DEDICATED TO THE MEMORY OF V.F. DEMYANOV) (CNSA), 2017, : 316 - 319
  • [6] LOCALLY CONVEX CONES AND THE SCHRODER-SIMPSON THEOREM
    Keimel, Klaus
    QUAESTIONES MATHEMATICAE, 2012, 35 (03) : 353 - 390
  • [7] Potential Operators on Cones of Nonincreasing Functions
    Meskhi, Alexander
    Murtaza, Ghulam
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [8] Extrapolation of Convex Functions
    Sababheh, M.
    FILOMAT, 2018, 32 (01) : 127 - 139
  • [9] On uniformly convex functions
    Grelier, G.
    Raja, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [10] Integral operators on cones of monotone functions
    Gogatishvili, A.
    Stepanov, V. D.
    DOKLADY MATHEMATICS, 2012, 86 (02) : 650 - 653