Toward Universal Representation Learning for Multidomain Hyperspectral Image Classification

被引:4
作者
Wang, Jing [1 ]
Zhou, Jun [2 ]
Liu, Xinwen [3 ]
机构
[1] Commonwealth Sci & Ind Res Org, Canberra, ACT 2601, Australia
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[3] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
关键词
Hyperspectral imaging; Training; Adaptation models; Deep learning; Image classification; Feature extraction; Computational modeling; Hyperspectral image (HSI) classification; multidomain learning; neural networks; universal representation; FEATURE-EXTRACTION; DISCRIMINANT-ANALYSIS;
D O I
10.1109/TGRS.2023.3264736
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning-based methods have greatly improved the performance of hyperspectral image (HSI) classification over the past several years. Nevertheless, current deep learning methods require training and deploying an independent model for each hyperspectral data domain. Representations learned for one data domain can hardly be generalized to other data domains, so multiple models are needed in real-world applications when data from multiple domains are involved. In this article, we design a single neural network that learns universal representations simultaneously from multiple hyperspectral remote sensing data domains. The universal convolutional neural network (CNN) adapts its behavior to different hyperspectral datasets. The majority of parameters of the network are shared to learn common knowledge from multiple datasets. A small number of domain-specific parameters are assigned to handle the domain shift. In addition, we propose a two-step training strategy to fully utilize the capacity of the universal network. Experiments conducted on seven HSI datasets demonstrate that the proposed universal network outperforms multiple individual specialized single-domain networks.
引用
收藏
页数:16
相关论文
共 63 条
[1]   Conditional Random Field and Deep Feature Learning for Hyperspectral Image Classification [J].
Alam, Fahim Irfan ;
Zhou, Jun ;
Liew, Alan Wee-Chung ;
Jia, Xiuping ;
Chanussot, Jocelyn ;
Gao, Yongsheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03) :1612-1628
[2]  
Arpit Devansh., 2016, ICML
[3]   Budget-Aware Adapters for Multi-Domain Learning [J].
Berriel, Rodrigo ;
Lathuiliere, Stephane ;
Nabi, Moin ;
Klein, Tassilo ;
Oliveira-Santos, Thiago ;
Sebe, Nicu ;
Ricci, Elisa .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :382-391
[4]  
Bilen H., 2017, arXiv
[5]   Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image [J].
Cai, Yaoming ;
Zhang, Zijia ;
Cai, Zhihua ;
Liu, Xiaobo ;
Jiang, Xinwei ;
Yan, Qin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :4191-4202
[6]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[7]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[8]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[9]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[10]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418