Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances

被引:9
作者
Barat, Maxime [1 ,2 ]
Marchese, Ugo [2 ,3 ]
Pellat, Anna [2 ,4 ]
Dohan, Anthony [1 ,2 ]
Coriat, Romain [2 ,4 ]
Hoeffel, Christine [5 ]
Fishman, Elliot K. K. [6 ]
Cassinotto, Christophe [7 ]
Chu, Linda [6 ]
Soyer, Philippe [1 ,2 ,8 ]
机构
[1] Hop Cochin, Assistance Publ Hop Paris, Dept Radiol, Paris, France
[2] Univ Paris Cite, Facultede Medecine, Paris, France
[3] Hop Cochin, AP HP, Dept Digest Hepatobiliary & Pancreat Surg, Paris, France
[4] Hop Cochin, AP HP, Dept Gastroenterol, Paris, France
[5] Robert Debre Hosp, Dept Radiol, Reims, France
[6] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA
[7] Univ Montpellier, St Eloi Hosp, Dept Radiol, CHU Montpellier, Montpellier, France
[8] Hop Cochin, AP HP, Dept Radiol, 27 Rue Faubourg St Jacques, F-75014 Paris, France
来源
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES | 2023年 / 74卷 / 02期
关键词
computer-assisted; deep learning; image processing; pancreatic neoplasms; radiomics; texture analysis; CT; FEATURES; PERFORMANCE; METASTASES; BIOMARKERS; RADIOMICS; CARCINOMA; DIAGNOSIS; RESECTION; SURVIVAL;
D O I
10.1177/08465371221124927
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 84 条
[41]   CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture analysis [J].
Kim, Bo Ram ;
Kim, Jung Hoon ;
Ahn, Su Joa ;
Joo, Ijin ;
Choi, Seo-Youn ;
Park, Sang Joon ;
Han, Joon Koo .
EUROPEAN RADIOLOGY, 2019, 29 (01) :362-372
[42]   Tumor resectability and response on CT following neoadjuvant therapy for pancreatic cancer: inter-observer agreement study [J].
Kim, Hae Young ;
Lee, Yoon Jin ;
Chang, Won ;
Cho, Jungheum ;
Park, Ji Hoon ;
Lee, Jong-Chan ;
Kim, Jaihwan ;
Hwang, Jin-Hyeok ;
Kim, Young Hoon .
EUROPEAN RADIOLOGY, 2022, 32 (06) :3799-3807
[43]   Preoperative CT texture features predict prognosis after curative resection in pancreatic cancer [J].
Kim, Hyung Sun ;
Kim, Young Jae ;
Kim, Kwang Gi ;
Park, Joon Seong .
SCIENTIFIC REPORTS, 2019, 9 (1)
[44]   Significance of indeterminate pulmonary nodules in resectable pancreatic adenocarcinoma-a review [J].
Kuan, Li Lian ;
Dennison, Ashley R. ;
Garcea, Giuseppe .
LANGENBECKS ARCHIVES OF SURGERY, 2021, 406 (03) :537-545
[45]   Prognostic relevance of the revised R status definition in pancreatic cancer: meta-analysis [J].
Leonhardt, Carl Stephan ;
Niesen, Willem ;
Kalkum, Eva ;
Klotz, Rosa ;
Hank, Thomas ;
Buchler, Markus Wolfgang ;
Strobel, Oliver ;
Probst, Pascal .
BJS OPEN, 2022, 6 (02)
[46]   Differentiation of atypical pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas: Using whole-tumor CT texture analysis as quantitative biomarkers [J].
Li, Jiali ;
Lu, Jingyu ;
Liang, Ping ;
Li, Anqin ;
Hu, Yao ;
Shen, Yaqi ;
Hu, Daoyu ;
Li, Zhen .
CANCER MEDICINE, 2018, 7 (10) :4924-4931
[47]  
Liu KL, 2020, LANCET DIGIT HEALTH, V2, pE303, DOI 10.1016/S2589-7500(20)30078-9
[48]   Establishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural network [J].
Liu, Shang-Long ;
Li, Shuo ;
Guo, Yu-Ting ;
Zhou, Yun-Peng ;
Zhang, Zheng-Dong ;
Li, Shuai ;
Lu, Yun .
CHINESE MEDICAL JOURNAL, 2019, 132 (23) :2795-2803
[49]   Effect of deep learning image reconstruction in the prediction of resectability of pancreatic cancer: Diagnostic performance and reader confidence [J].
Lyu, Peijie ;
Neely, Ben ;
Solomon, Justin ;
Rigiroli, Francesca ;
Ding, Yuqin ;
Schwartz, Fides Regina ;
Thomsen, Brian ;
Lowry, Carolyn ;
Samei, Ehsan ;
Marin, Daniele .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 141
[50]   Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis [J].
Ma, Han ;
Liu, Zhong-Xin ;
Zhang, Jing-Jing ;
Wu, Feng-Tian ;
Xu, Cheng-Fu ;
Shen, Zhe ;
Yu, Chao-Hui ;
Li, You-Ming .
WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (34) :5156-5168