Localization as a consequence of quasiperiodic bulk-bulk correspondence

被引:9
作者
Borgnia, Dan S. [1 ]
Slager, Robert -Jan [1 ,2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Cambridge, Cavendish Lab, TCM Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
关键词
SCHRODINGER-OPERATORS; HOLDER CONTINUITY; SPECTRUM; NUMBER; STATES; SPACE;
D O I
10.1103/PhysRevB.107.085111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on a direct connection between band theory, quasiperiodic topology, and the almost-Mathieu (Aubry-Andre) metal insulator transition (MIT). By constructing the transfer matrix equations of onedimensional (1D) quasiperiodic operators from rational approximate projected Green's functions, we relate the quasiperiodic Lyapunov exponents to the chiral edge modes of rational-flux Hofstadter Hamiltonians. We thereby show that the insulating phase is rooted in a topological "bulk-bulk" correspondence, a bulk-boundary correspondence between the 1D Aubry-Andre system (boundary) and its two-dimensional (2D) parent Hamiltonian (bulk). We extend this connection to random disorder via a Fourier expansion in quasiperiodic modes, demonstrating our results are widely applicable to systems beyond this paradigmatic model. The uncorrelated disorder limit is characterized by the breakdown of bulk-boundary driven quasiperiodic localization.
引用
收藏
页数:10
相关论文
共 58 条
[1]   Dirac electrons in a dodecagonal graphene quasicrystal [J].
Ahn, Sung Joon ;
Moon, Pilkyung ;
Kim, Tae-Hoon ;
Kim, Hyun-Woo ;
Shin, Ha-Chul ;
Kim, Eun Hye ;
Cha, Hyun Woo ;
Kahng, Se-Jong ;
Kim, Philip ;
Koshino, Mikito ;
Son, Young-Woo ;
Yang, Cheol-Woong ;
Ahn, Joung Real .
SCIENCE, 2018, 361 (6404) :782-+
[2]  
Amor SH, 2009, COMMUN MATH PHYS, V287, P565, DOI 10.1007/s00220-008-0688-x
[3]  
[Anonymous], 1975, Funct. Anal. Appl.
[4]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[5]  
Aubry S., 1981, NUMERICAL METHODS ST, P79
[6]   Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
ANNALS OF MATHEMATICS, 2006, 164 (03) :911-940
[7]  
Avila A, 2009, Arxiv, DOI arXiv:0905.3902
[8]  
Avila A, 2006, LECT NOTES PHYS, V690, P5
[9]   SHARP PHASE TRANSITIONS FOR THE ALMOST MATHIEU OPERATOR [J].
Avila, Artur ;
You, Jiangong ;
Zhou, Qi .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (14) :2697-2718
[10]   Holder Continuity of Absolutely Continuous Spectral Measures for One-Frequency Schrodinger Operators [J].
Avila, Artur ;
Jitomirskaya, Svetlana .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (02) :563-581