Bayesian Deep Learning for Image Reconstruction: From structured sparsity to uncertainty estimation

被引:3
作者
Dong, Weisheng [1 ,2 ]
Wu, Jinjian [3 ,4 ]
Li, Leida [5 ]
Shi, Guangming [6 ,7 ]
Li, Xin [8 ,9 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
[2] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[3] Nanyang Technol Univ, Singapore, Singapore
[4] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Rapid Rich Object Search Lab, Singapore, Singapore
[6] Xidian Univ, Sch Elect Engn, Xian, Peoples R China
[7] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[8] Univ Sci & Technol China, Elect Engn & informat Sci, Hefei, Peoples R China
[9] West Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Deep learning; Uncertainty; Image coding; Computational modeling; Imaging; Signal processing algorithms; Network architecture; REPRESENTATION; RESTORATION; NETWORK;
D O I
10.1109/MSP.2022.3176421
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional wisdom in model-based computational imaging incorporates physics-based imaging models, noise characteristics, and image priors into a unified Bayesian framework. Rapid advances in deep learning have inspired a new generation of data-driven computational imaging systems with performances even better than those of their model-based counterparts. However, the design of learning-based algorithms for computational imaging often lacks transparency, making it difficult to optimize the entire imaging system in a complete manner.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 30 条
  • [1] Solving inverse problems using data-driven models
    Arridge, Simon
    Maass, Peter
    Oktem, Ozan
    Schonlieb, Carola-Bibiane
    [J]. ACTA NUMERICA, 2019, 28 : 1 - 174
  • [2] Cheng XJ, 2020, AAAI CONF ARTIF INTE, V34, P10615
  • [3] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [4] Denoising Prior Driven Deep Neural Network for Image Restoration
    Dong, Weisheng
    Wang, Peiyao
    Yin, Wotao
    Shi, Guangming
    Wu, Fangfang
    Lu, Xiaotong
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (10) : 2305 - 2318
  • [5] Nonlocally Centralized Sparse Representation for Image Restoration
    Dong, Weisheng
    Zhang, Lei
    Shi, Guangming
    Li, Xin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (04) : 1618 - 1628
  • [6] Sparse Representation Based Image Interpolation With Nonlocal Autoregressive Modeling
    Dong, Weisheng
    Zhang, Lei
    Lukac, Rastislav
    Shi, Guangming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (04) : 1382 - 1394
  • [7] Nonlocal Image Restoration With Bilateral Variance Estimation: A Low-Rank Approach
    Dong, Weisheng
    Shi, Guangming
    Li, Xin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 700 - 711
  • [8] Dong WS, 2011, PROC CVPR IEEE, P457, DOI 10.1109/CVPR.2011.5995478
  • [9] Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging
    Huang, Tao
    Dong, Weisheng
    Yuan, Xin
    Wu, Jinjian
    Shi, Guangming
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16211 - 16220
  • [10] Jinsun Park, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12358), P120, DOI 10.1007/978-3-030-58601-0_8