Mixed Ligand Passivation as the Origin of Near-Unity Emission Quantum Yields in CsPbBr3 Nanocrystals

被引:9
作者
Ding, Yang [1 ]
Zhang, Zhuoming [1 ]
Toso, Stefano [1 ,3 ]
Gushchina, Irina [1 ]
Trepalin, Vadim [1 ]
Shi, Kejia [1 ]
Peng, Jeffrey W. [1 ]
Kuno, Masaru [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[3] Inst Italiano Tecnol, Nanochem Dept, I-16163 Genoa, Italy
关键词
PEROVSKITE NANOCRYSTALS; COLLOIDAL SYNTHESIS; SURFACE-CHEMISTRY; EXCHANGE; BINDING; STABILITY; DIFFUSION; ACID;
D O I
10.1021/jacs.2c13527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Key features of syntheses, involving the quaternary ammonium passivation of CsPbBr3 nanocrystals (NCs), include stable, reproducible, and large (often near-unity) emission quantum yields (QYs). The archetypical example involves didodecyl dimethyl ammonium (DDDMA+)-passivated CsPbBr3 NCs where robust QYs stem from interactions between DDDMA+ and NC surfaces. Despite widespread adoption of this synthesis, specific ligand-NC surface interactions responsible for large DDDMA+-passivated NC QYs have not been fully established. Multidimensional nuclear magnetic resonance experiments now reveal a new DDDMA+-NC surface interaction, beyond established "tightly bound" DDDMA+ interactions, which strongly affects observed emission QYs. Depending upon the existence of this new DDDMA+ coordination, NC QYs vary broadly between 60 and 85%. More importantly, these measurements reveal surface passivation through unexpected didodecyl ammonium (DDA+) that works in concert with DDDMA+ to produce near-unity (i.e., >90%) QYs.
引用
收藏
页码:6362 / 6370
页数:9
相关论文
共 49 条
[1]   Combined NMR and Isothermal Titration Calorimetry Investigation Resolves Conditions for Ligand Exchange and Phase Transformation in CsPbBr3 Nanocrystals [J].
Abiodun, Sakiru L. ;
Gee, Megan Y. ;
Greytak, Andrew B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (32) :17897-17905
[2]   Effective Purification of CsPbBr3 Nanocrystals with High Quantum Yield and High Colloidal Stability via Gel Permeation Chromatography [J].
Abiodun, Sakiru L. ;
Pellechia, Perry J. ;
Greytak, Andrew B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (06) :3463-3471
[3]   Strongly emissive perovskite nanocrystal inks for high-voltage solar cells [J].
Akkerman, Quinten A. ;
Gandini, Marina ;
Di Stasio, Francesco ;
Rastogi, Prachi ;
Palazon, Francisco ;
Bertoni, Giovanni ;
Ball, James M. ;
Prato, Mirko ;
Petrozza, Annamaria ;
Manna, Liberato .
NATURE ENERGY, 2017, 2 (02)
[4]   Charge Carrier Diffusion Dynamics in Multisized Quaternary Alkylammonium-Capped CsPbBr3 Perovskite Nanocrystal Solids [J].
Alvarez, Sol Gutierrez ;
Lin, Weihua ;
Abdellah, Mohamed ;
Meng, Jie ;
Zidek, Karel ;
Pullerits, Tonu ;
Zheng, Kaibo .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (37) :44742-44750
[5]   Ligand Assisted Transformation of Cubic CsPbBr3 Nanocrystals into Two-Dimensional CsPb2Br5 Nanosheets [J].
Balakrishnan, Subila K. ;
Kamat, Prashant V. .
CHEMISTRY OF MATERIALS, 2018, 30 (01) :74-78
[6]  
Baranov D., 2021, ACS NANO, P15
[7]  
Bodnarchuk M. I., 2019, ACS ENERGY LETT
[8]   STRUCTURE DETERMINATION OF A TETRASACCHARIDE - TRANSIENT NUCLEAR OVERHAUSER EFFECTS IN THE ROTATING FRAME [J].
BOTHNERBY, AA ;
STEPHENS, RL ;
LEE, JM ;
WARREN, CD ;
JEANLOZ, RW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (03) :811-813
[9]   Universal Size-Dependent Stokes Shifts in Lead Halide Perovskite Nanocrystals [J].
Brennan, Michael C. ;
Forde, Aaron ;
Zhukovskyi, Maksym ;
Baublis, Andrew J. ;
Morozov, Yurii, V ;
Zhang, Shubin ;
Zhang, Zhuoming ;
Kilin, Dmitri S. ;
Kuno, Masaru .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (13) :4937-4944
[10]   Crystal Structure of Individual CsPbBr3 Perovskite Nanocubes [J].
Brennan, Michael C. ;
Kuno, Masaru ;
Rouvimov, Sergei .
INORGANIC CHEMISTRY, 2019, 58 (02) :1555-1560