Asymptotic inference for stochastic differential equations driven by fractional Brownian motion

被引:0
作者
Nakajima, Shohei [1 ]
Shimizu, Yasutaka [1 ]
机构
[1] Waseda Univ, Dept Appl Math, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
关键词
Parameter estimation; Stochastic differential equation; Fractional Brownian motion; Multiplicative noise; Small noise asymptotics; PARAMETER-ESTIMATION;
D O I
10.1007/s42081-022-00181-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a problem of parametric estimation for continuously observed stochastic processes involving fractional Brownian motion with Hurst index H is an element of (1 /2, 1). Under some assumptions on the drift and volatility coefficients, we obtain the asymptotic normality and moment convergence of maximum likelihood type estimator of the drift parameter under the small noise asymptotics such that the driving noise vanishes.
引用
收藏
页码:431 / 455
页数:25
相关论文
共 20 条
  • [1] Brouste A, 2010, STAT INFERENCE STOCH, V13, P1, DOI [DOI 10.1007/S11203-009-9035-X, 10.1007/s11203-009-9035-x, DOI 10.1007/s11203-009-9035-x]
  • [2] Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package
    Brouste, Alexandre
    Iacus, Stefano M.
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1529 - 1547
  • [3] An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter
    Chiba, Kohei
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 319 - 353
  • [4] Da Prato G., 2014, STOCHASTIC EQUATIONS, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
  • [5] Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion
    Hairer, M.
    Pillai, N. S.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02): : 601 - 628
  • [6] Ibragimov IA., 1981, STAT ESTIMATION ASYM, DOI DOI 10.1007/978-1-4899-0027-2
  • [7] Kleptsyna M., 2002, STAT INFER STOCH PRO, V5, P229, DOI DOI 10.1023/A:1021220818545
  • [8] On drift parameter estimation in models with fractional Brownian motion
    Kozachenko, Y.
    Melnikov, A.
    Mishura, Y.
    [J]. STATISTICS, 2015, 49 (01) : 35 - 62
  • [9] On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion
    Kubilius, K.
    Skorniakov, V.
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 109 : 159 - 167
  • [10] Liptser R., 2001, STAT RANDOM PROCESSE, P161, DOI DOI 10.1007/978-3-662-10028-8