A Convolutional Neural Network approach for image-based anomaly detection in smart agriculture

被引:11
|
作者
Mendoza-Bernal, Jose [1 ]
Gonzalez-Vidal, Aurora [1 ]
Skarmeta, Antonio F. [1 ]
机构
[1] Univ Murcia, Fac Comp Sci, Dept Informat & Commun Engn, Murcia 30100, Spain
关键词
Smart agriculture; Anomaly detection; Weed detection; Computer vision; Image classification; Deep learning; RECOGNITION;
D O I
10.1016/j.eswa.2024.123210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent technological advances and their applications to agriculture provide leverage for the new paradigm of smart agriculture. Remote sensing applications can help optimise resources, making agriculture more ecological, increasing productivity and helping farmers to anticipate events that could not otherwise avoided. Considering that losses caused by anomalies such as diseases, weeds and pests account for 20-40 of overall agricultural productivity, a successful research effort in this area would be a breakthrough for agriculture. In this paper, we propose a methodology with which to discover and classify anomalies in images of crops, taken from a wide range of distances, using different Convolutional Neural Network architectures. This methodology also deals with several difficulties that usually appear in this kind of problems, such as class imbalance, the insufficient and small variety of images, overtraining or lack of models generalisation. We have implemented four convolutional neural network architectures in a high-performance computing environment, and propose a methodology based on data augmentation with the addition of Gaussian noise to the images solve the above problems. Our approach was tested using two well -established open datasets that are unalike: DeepWeeds, which provides a classification of 8 weed species native to Australia using images that were taken at a distance of 1 m, and Agriculture -Vision, which classifies 6 types of crop anomalies using multispectral satellite imagery. Our methodology attained accuracies of 98 % and 95.3% respectively, improving the state-ofthe-art by several points. In order to ease reproducibility and model selection, we have provided a comparison in terms of computational time and other metrics, thus enabling the choice between architectures to be made according to the resources available. The complete code is available in an open repository in order to encourage reproducibility and promote scientific advances in sustainable agriculture.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Spectrogram Image-Based Network Anomaly Detection System Using Deep Convolutional Neural Network
    Khan, Adnan Shahid
    Ahmad, Zeeshan
    Abdullah, Johari
    Ahmad, Farhan
    IEEE ACCESS, 2021, 9 : 87079 - 87093
  • [2] UAV Image-based Forest Fire Detection Approach Using Convolutional Neural Network
    Chen, Yanhong
    Zhang, Youmin
    Xin, Jing
    Wang, Guangyi
    Mu, Lingxia
    Yi, Yingmin
    Liu, Han
    Liu, Ding
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 2118 - 2123
  • [3] Image-Based Detection of Adulterants in Milk Using Convolutional Neural Network
    Mamgain, Adhyayan
    Kumar, Virkeshwar
    Dash, Susmita
    ACS OMEGA, 2024, 9 (25): : 27158 - 27168
  • [4] Indoor Human Detection Based on Convolutional Neural Network and Image-based Processing
    Yang, Junhua
    Bai, Guodong
    Lu, Jingyu
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 619 - 623
  • [5] A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection
    Yinuo Huo
    Qixing Zhang
    Yang Jia
    Dongcai Liu
    Jinfu Guan
    Gaohua Lin
    Yongming Zhang
    Fire Technology, 2022, 58 : 1445 - 1468
  • [6] A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection
    Huo, Yinuo
    Zhang, Qixing
    Jia, Yang
    Liu, Dongcai
    Guan, Jinfu
    Lin, Gaohua
    Zhang, Yongming
    FIRE TECHNOLOGY, 2022, 58 (03) : 1445 - 1468
  • [7] Image-based Conflict Detection with Convolutional Neural Network under Weather Uncertainty
    Dang, Phuoc H.
    Mohamed, M. A.
    Alam, Sameer
    2023 INTEGRATED COMMUNICATION, NAVIGATION AND SURVEILLANCE CONFERENCE, ICNS, 2023,
  • [8] Image-based time series forecasting: A deep convolutional neural network approach
    Semenoglou, Artemios-Anargyros
    Spiliotis, Evangelos
    Assimakopoulos, Vassilios
    NEURAL NETWORKS, 2023, 157 : 39 - 53
  • [9] A novel image-based convolutional neural network approach for traffic congestion estimation
    Gao, Ying
    Li, Jinlong
    Xu, Zhigang
    Liu, Zhangqi
    Zhao, Xiangmo
    Chen, Jianhua
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180
  • [10] Anomaly Detection in Smart Home Environments using Convolutional Neural Network
    Ercan, Naci Mert
    Sert, Mustafa
    23RD IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2021), 2021, : 27 - 30