ASYMPTOTIC PROPERTIES OF THE BOUSSINESQ EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

被引:5
作者
Kukavica, Igor [1 ]
Massatt, David [1 ]
Ziane, Mohammed [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
关键词
Dimension theory; Poincare recurrences; multifractal analysis; discretetime model; singular Hopf bifurcation; GLOBAL WELL-POSEDNESS; LONG-TIME BEHAVIOR; REGULARITY; SYSTEM; PERSISTENCE;
D O I
10.3934/dcds.2023040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the asymptotic properties for the Boussinesq equations with vanishing thermal diffusivity in a bounded domain with no-slip boundary conditions. We show the dissipation of the L-2 norm of the velocity and its gradient, convergence of the L-2 norm of Au, and an o(1)-type exponential growth for ||A(3/2)u||(L2). We also obtain that in the interior of the domain the gradient of the vorticity is bounded by a polynomial function of time.
引用
收藏
页码:3060 / 3081
页数:22
相关论文
共 44 条
[11]  
Chen JJ, 2021, COMMUN MATH PHYS, V383, P1559, DOI 10.1007/s00220-021-04067-1
[12]   LONG-TIME ASYMPTOTIC BEHAVIOR OF TWO-DIMENSIONAL DISSIPATIVE BOUSSINESQ SYSTEMS [J].
Chen, Min ;
Goubet, Olivier .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (01) :37-53
[13]  
Constantin P., 1988, Navier-Stokes Equations
[14]   The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity [J].
Danchin, Raphael ;
Paicu, Marius .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02) :261-309
[15]  
Doering C. R., 1995, APPL ANAL NAVIER STO, V12
[16]   Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion [J].
Doering, Charles R. ;
Wu, Jiahong ;
Zhao, Kun ;
Zheng, Xiaoming .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 :144-159
[17]   Finite-time singularity formation for C1,α solutions to the incompressible Euler equations on R3 [J].
Elgindi, Tarek M. .
ANNALS OF MATHEMATICS, 2021, 194 (03) :647-727
[18]   Finite-Time Singularity Formation for Strong Solutions to the Boussinesq System [J].
Elgindi, Tarek M. ;
Jeong, In-Jee .
ANNALS OF PDE, 2020, 6 (01)
[19]  
Giga Y., 1989, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V36, P103
[20]   ON THE GLOBAL REGULARITY OF THE 2D CRITICAL BOUSSINESQ SYSTEM WITH α>2/3 [J].
Hadadifard, Fazel ;
Stefanov, Atanas .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (05) :1325-1351