ASYMPTOTIC PROPERTIES OF THE BOUSSINESQ EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

被引:5
作者
Kukavica, Igor [1 ]
Massatt, David [1 ]
Ziane, Mohammed [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
关键词
Dimension theory; Poincare recurrences; multifractal analysis; discretetime model; singular Hopf bifurcation; GLOBAL WELL-POSEDNESS; LONG-TIME BEHAVIOR; REGULARITY; SYSTEM; PERSISTENCE;
D O I
10.3934/dcds.2023040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the asymptotic properties for the Boussinesq equations with vanishing thermal diffusivity in a bounded domain with no-slip boundary conditions. We show the dissipation of the L-2 norm of the velocity and its gradient, convergence of the L-2 norm of Au, and an o(1)-type exponential growth for ||A(3/2)u||(L2). We also obtain that in the interior of the domain the gradient of the vorticity is bounded by a polynomial function of time.
引用
收藏
页码:3060 / 3081
页数:22
相关论文
共 44 条
[1]   Global regularity results for the 2D Boussinesq equations with partial dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Shang, Haifeng ;
Wu, Jiahong ;
Xu, Xiaojing ;
Ye, Zhuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1893-1917
[2]   Global regularity results for the 2D Boussinesq equations with vertical dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1637-1655
[3]  
[Anonymous], 2007, Adv. Diff. Eqs.
[4]  
Berselli LC, 2011, METHODS APPL ANAL, V18, P391
[5]   On the attractor for the semi-dissipative Boussinesq equations [J].
Biswas, Animikh ;
Foias, Ciprian ;
Larios, Adam .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02) :381-405
[6]   LARGE TIME DECAY AND GROWTH FOR SOLUTIONS OF A VISCOUS BOUSSINESQ SYSTEM [J].
Brandolese, Lorenzo ;
Schonbek, Maria E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (10) :5057-5090
[7]  
Cannon J. R., 1980, Approximation Methods for NavierStokes Problems (Proceedings of the Symposium, University of Paderborn, Paderborn, 1979), V771, P129
[8]   Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation [J].
Cao, Chongsheng ;
Wu, Jiahong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) :985-1004
[9]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[10]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513