Electrostatically Cross-Linked Bioinks for Jetting-Based Bioprinting of 3D Cell Cultures

被引:7
|
作者
Suwannakot, Panthipa [1 ,2 ]
Zhu, Lin [1 ,2 ]
Tolentino, M. A. Kristine [1 ,2 ]
Du, Eric Y. [1 ,2 ]
Sexton, Andrew [3 ]
Myers, Sam [3 ]
Gooding, J. Justin [1 ,2 ]
机构
[1] UNSW Sydney, Sch Chem, Sydney, NSW 2052, Australia
[2] UNSW Sydney, Australian Ctr Nanomed, Sydney, NSW 2031, Australia
[3] Inventia Life Sci Pty Ltd, Sydney, NSW 2015, Australia
来源
ACS APPLIED BIO MATERIALS | 2023年 / 7卷 / 01期
基金
英国医学研究理事会;
关键词
3D bioprinting; polyelectrolyte hydrogel; 3Dcell cultures; single spheroid formation; biomaterials; SURFACE; PARTICLES; POLYMER; TENSION; HYBRID; GROWTH;
D O I
10.1021/acsabm.3c00849
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It has been acknowledged that thousands of drugs that passed two-dimensional (2D) cell culture models and animal studies often fail when entering human clinical trials. Despite the significant development of three-dimensional (3D) models, developing a high-throughput model that can be reproducible on a scale remains challenging. One of the main challenges is precise cell deposition and the formation of a controllable number of spheroids to achieve more reproducible results for drug discovery and treatment applications. Furthermore, when transitioning from manually generated structures to 3D bioprinted structures, the choice of material is limited due to restrictions on materials that are applicable with bioprinters. Herein, we have shown the capability of a fast-cross-linking bioink that can be used to create a single spheroid with varying diameters (660, 1100, and 1340 mu m) in a high-throughput manner using a commercialized drop-on-demand bioprinter. Throughout this work, we evaluate the physical properties of printable ink with and without cells, printing optimization, cytocompatibility, cell sedimentation, and homogeneity in ink during the printing process. This work showcases the importance of ink characterization to determine printability and precise cell deposition. The knowledge gained from this work will accelerate the development of next-generation inks compatible with a drop-on-demand 3D bioprinter for various applications such as precision models to mimic diseases, toxicity tests, and the drug development process.
引用
收藏
页码:269 / 283
页数:15
相关论文
共 50 条
  • [1] Engineering bioinks for 3D bioprinting
    Decante, Guy
    Costa, Joao B.
    Silva-Correia, Joana
    Collins, Maurice N.
    Reis, Rui L.
    Oliveira, J. Miguel
    BIOFABRICATION, 2021, 13 (03)
  • [2] Functionalizing bioinks for 3D bioprinting applications
    Parak, Azraa
    Pradeep, Priyamvada
    du Toit, Lisa C.
    Kumar, Pradeep
    Choonara, Yahya E.
    Pillay, Viness
    DRUG DISCOVERY TODAY, 2019, 24 (01) : 198 - 205
  • [3] Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration
    Ramiah, Previn
    du Toit, Lisa C.
    Choonara, Yahya E.
    Kondiah, Pierre P. D.
    Pillay, Viness
    FRONTIERS IN MATERIALS, 2020, 7
  • [4] Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting
    Gu, Yawei
    Forget, Aurelien
    Shastri, V. Prasad
    ADVANCED SCIENCE, 2022, 9 (03)
  • [5] Recent Advances in Engineering Bioinks for 3D Bioprinting
    Wang, Haonan
    Bi, Shihao
    Shi, Bingbing
    Ma, Junchi
    Lv, Xiangwei
    Qiu, Jianfeng
    Wei, Yunyun
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (19)
  • [6] 3D Bioprinting of Tissue Models with Customized Bioinks
    Vurat, Murat Taner
    Ergun, Can
    Elcin, Ayse Eser
    Elcin, Yasar Murat
    BIOINSPIRED BIOMATERIALS: ADVANCES IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 1249 : 67 - 84
  • [7] Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting
    Panwar, Amit
    Tan, Lay Poh
    MOLECULES, 2016, 21 (06)
  • [8] A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications
    Teixeira, Maria C.
    Lameirinhas, Nicole S.
    Carvalho, Joao P. F.
    Silvestre, Armando J. D.
    Vilela, Carla
    Freire, Carmen S. R.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (12)
  • [9] 3D Bioprinting Using Universal Fugitive Network Bioinks
    Arslan, Hakan
    Davuluri, Aneela
    Nguyen, Hiep H.
    So, Byung Ran
    Lee, Juhyun
    Jeon, Junha
    Yum, Kyungsuk
    ACS APPLIED BIO MATERIALS, 2024, 7 (10): : 7040 - 7050
  • [10] 3D coaxial bioprinting: process mechanisms, bioinks and applications
    Shyam Mohan, Tarun
    Datta, Pallab
    Nesaei, Sepehr
    Ozbolat, Veli
    Ozbolat, Ibrahim T.
    PROGRESS IN BIOMEDICAL ENGINEERING, 2022, 4 (02):