Solid-Phase Collateral Cleavage System Based on CRISPR/Cas12 and Its Application toward Facile One-Pot Multiplex Double-Stranded DNA Detection

被引:6
作者
Shigemori, Hiroki [1 ,2 ]
Fujita, Satoshi [1 ]
Tamiya, Eiichi [1 ,3 ]
Wakida, Shin-ichi [1 ,3 ]
Nagai, Hidenori [1 ,2 ]
机构
[1] Osaka Univ, Natl Inst Adv Ind Sci & Technol AIST, Adv Photon & Biosensing Open Innovat Lab PhotoBIO, Photon Ctr, Osaka 5650871, Japan
[2] Kobe Univ, Grad Sch Human Dev & Environm, Kobe, Hyogo 6570011, Japan
[3] Osaka Univ, Inst Sci & Ind Res SANKEN, Osaka 5670047, Japan
关键词
HYBRIDIZATION; TIME; RNA;
D O I
10.1021/acs.bioconjchem.3c00294
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 12 (Cas12) system is attracting interest for its potential as a next-generation nucleic acid detection tool. The system can recognize double-stranded DNA (dsDNA) based on Cas12-CRISPR RNA (crRNA) and induce signal transduction by collateral cleavage. This property is expected to simplify comprehensive genotyping. Here, we report a solid-phase collateral cleavage (SPCC) reaction by CRISPR/Cas12 and its application toward one-pot multiplex dsDNA detection with minimal operational steps. In the sensor, Cas12-crRNA and single-stranded DNA (ssDNA) are immobilized on the sensing surface and act as enzyme and reporter substrates, respectively. We also report a dual-target dsDNA sensor prepared by immobilizing Cas12-crRNA and a fluorophore-labeled ssDNA reporter on separate spots. When a spot captures a target dsDNA sequence, it cleaves the ssDNA reporter on the same spot and reduces its fluorescence by 42.1-57.3%. Crucially, spots targeting different sequences do not show a reduction in fluorescence, thus confirming the one-pot multiplex dsDNA detection by SPCC. Furthermore, the sequence specificity has a two-base resolution, and the detectable concentration for the target dsDNA is at least 10-9 M. In the future, the SPCC-based sensor array could achieve one-pot comprehensive genotyping by using an array spotter as a reagent-immobilizing method.
引用
收藏
页码:1754 / 1765
页数:12
相关论文
共 60 条
[1]   Massively multiplexed nucleic acid detection with Cas13 [J].
Ackerman, Cheri M. ;
Myhrvold, Cameron ;
Thakku, Sri Gowtham ;
Freije, Catherine A. ;
Metsky, Hayden C. ;
Yang, David K. ;
Ye, Simon H. ;
Boehm, Chloe K. ;
Kosoko-Thoroddsen, Tinna-Solveig F. ;
Kehe, Jared ;
Nguyen, Tien G. ;
Carter, Amber ;
Kulesa, Anthony ;
Barnes, John R. ;
Dugan, Vivien G. ;
Hung, Deborah T. ;
Blainey, Paul C. ;
Sabeti, Pardis C. .
NATURE, 2020, 582 (7811) :277-+
[2]   Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor [J].
Balderston, Sarah ;
Taulbee, Jeffrey J. ;
Celaya, Elizabeth ;
Fung, Kandace ;
Jiao, Amanda ;
Smith, Kasey ;
Hajian, Reza ;
Gasiunas, Giedrius ;
Kutanovas, Simonas ;
Kim, Daehwan ;
Parkinson, Jonathan ;
Dickerson, Kenneth ;
Ripoll, Juan-Jose ;
Peytavi, Regis ;
Lu, Hsiang-Wei ;
Barron, Francie ;
Goldsmith, Brett R. ;
Collins, Philip G. ;
Conboy, Irina M. ;
Siksnys, Virginijus ;
Aran, Kiana .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (07) :713-725
[3]   Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis [J].
Bodulev, O. L. ;
Sakharov, I. Yu. .
BIOCHEMISTRY-MOSCOW, 2020, 85 (02) :147-166
[4]   Evaluation of Microbiological Performance and the Potential Clinical Impact of the ePlex(R) Blood Culture Identification Panels for the Rapid Diagnosis of Bacteremia and Fungemia [J].
Bryant, Sabrina ;
Almahmoud, Iyad ;
Pierre, Isabelle ;
Bardet, Julie ;
Touati, Saber ;
Maubon, Daniele ;
Cornet, Muriel ;
Richarme, Claire ;
Maurin, Max ;
Pavese, Patricia ;
Caspar, Yvan .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2020, 10
[5]   Planar waveguides as high performance sensing platforms for fluorescence-based multiplexed oligonucleotide hybridization assays [J].
Budach, W ;
Abel, AP ;
Bruno, AE ;
Neuschäfer, D .
ANALYTICAL CHEMISTRY, 1999, 71 (16) :3347-3355
[6]   Simultaneous detection of CaMV35S and T-nos utilizing CRISPR/Cas12a and Cas13a with multiplex-PCR (MPT-Cas12a/13a) [J].
Cao, Gaihua ;
Dong, Jiangbo ;
Chen, Xiaolong ;
Lu, Peng ;
Xiong, Yifan ;
Peng, Lan ;
Li, Jiawei ;
Huo, Danqun ;
Hou, Changjun .
CHEMICAL COMMUNICATIONS, 2022, 58 (43) :6328-6331
[7]   Paper Device Combining CRISPR/Cas12a and Reverse-Transcription Loop-Mediated Isothermal Amplification for SARS-CoV-2 Detection in Wastewater [J].
Cao, Haorui ;
Mao, Kang ;
Ran, Fang ;
Xu, Pengqi ;
Zhao, Yirong ;
Zhang, Xiangyan ;
Zhou, Hourong ;
Yang, Zhugen ;
Zhang, Hua ;
Jiang, Guibin .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (18) :13245-13253
[8]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[9]   Temperature-boosted PAM-less activation of CRISPR-Cas12a combined with selective inhibitors enhances detection of SNVs with VAFs below 0.01% [J].
Chen, Kena ;
Dai, Ling ;
Zhao, Jie ;
Deng, Mengjun ;
Song, Lin ;
Bai, Dan ;
Wu, You ;
Zhou, Xi ;
Yang, Yujun ;
Yang, Shuangshuang ;
Zhao, Lin ;
Chen, Xueping ;
Xie, Guoming ;
Li, Junjie .
TALANTA, 2023, 261
[10]   Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip [J].
Chen, Yong ;
Mei, Yixin ;
Jiang, Xingyu .
CHEMICAL SCIENCE, 2021, 12 (12) :4455-4462