Mimicking Metalloenzyme Microenvironments in the Transition Metal-Single Atom Catalysts for Electrochemical Hydrogen Peroxide Synthesis in an Acidic Medium

被引:9
作者
Muthusamy, Saravanakumar [1 ,2 ,3 ,4 ,5 ]
Sabhapathy, Palani [3 ,5 ]
Raghunath, Putikam
Sabbah, Amr [4 ,6 ]
Chang, Yu-Chung [7 ]
Krishnamoorthy, Vimal [5 ,8 ]
Ho, Thi-Thong [4 ]
Chiou, Jau-Wern [9 ]
Lin, Ming-Chang [3 ]
Chen, Li-Chyong [5 ,10 ,11 ]
Chen, Kuei-Hsien [4 ,5 ]
机构
[1] Acad Sinica, Taiwan Int Grad Program, Sustainable Chem Sci & Technol, Nangang 11529, Taiwan
[2] Acad Sinica, Inst Chem, Taipei 11529, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu 30010, Taiwan
[4] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
[6] Tabbin Inst Met Studies, Cairo 11421, Egypt
[7] Natl Synchrotron Radiat Res Ctr, Xray Absorpt Grp, Hsinchu 30076, Taiwan
[8] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Taipei 10607, Taiwan
[9] Natl Univ Kaohsiung, Dept Appl Phys, Kaohsiung 811726, Taiwan
[10] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[11] Natl Taiwan Univ, Ctr Atom Initiat New Mat, Taipei 10617, Taiwan
关键词
d-band center; electrocatalysis; electrochemical H2O2 production; electronic structures; oxygen reduction reaction; single-atom catalysts; OXYGEN REDUCTION REACTION; ACTIVE-SITES; H2O2; MECHANISM; SELECTIVITY; PLATINUM; DESIGN; TRENDS; SPHERE;
D O I
10.1002/smtd.202300234
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of oxygen into hydrogen peroxide in an acidic medium offers an energy-efficient and green H2O2 synthesis as an alternative to the energy-intensive anthraquinone process. Unfortunately, high overpotential, low production rates, and fierce competition from traditional four-electron reduction limit it. In this study, a metalloenzyme-like active structure is mimicked in carbon-based single-atom electrocatalysts for oxygen reduction to H2O2. Using a carbonization strategy, the primary electronic structure of the metal center with nitrogen and oxygen coordination is modulated, followed by epoxy oxygen functionalities close to the metal active sites. In an acidic medium, CoNOC active structures proceed with greater than 98% H2O2 selectivity (2e(-)/2H(+)) rather than CoNC active sites that are selective to H2O (4e(-)/4H(+)). Among all MNOC (M = Fe, Co, Mn, and Ni) single-atom electrocatalysts, the CoNOC is the most selective (> 98%) for H2O2 production, with a mass activity of 10 A g(-1) at 0.60 V vs. RHE. X-ray absorption spectroscopy is used to identify the formation of unsymmetrical MNOC active structures. Experimental results are also compared to density functional theory calculations, which revealed that the structure-activity relationship of the epoxy-surrounded CoNOC active structure reaches optimum (& UDelta;G(*OOH)) binding energies for high selectivity.
引用
收藏
页数:10
相关论文
共 63 条
[1]  
Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/nmat2858, 10.1038/NMAT2858]
[2]   Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis [J].
Amanullah, Sk ;
Saha, Paramita ;
Nayek, Abhijit ;
Ahmed, Md Estak ;
Dey, Abhishek .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (06) :3755-3823
[3]   Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles [J].
Anjum, Safia ;
Tufail, Rabia ;
Rashid, Khalid ;
Zia, Rehana ;
Riaz, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 432 :198-207
[4]   Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion [J].
Azcarate, Iban ;
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (51) :16639-16644
[5]  
Badwal S.P.S., 2014, FRONT CHEM, P2
[6]   Multiple selectivity-determining mechanisms of H2O2 formation in iron porphyrin-catalysed oxygen reduction [J].
Brezny, Anna C. ;
Nedzbala, Hannah S. ;
Mayer, James M. .
CHEMICAL COMMUNICATIONS, 2021, 57 (10) :1202-1205
[7]   Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry [J].
Brillas, Enric ;
Sires, Ignasi ;
Oturan, Mehmet A. .
CHEMICAL REVIEWS, 2009, 109 (12) :6570-6631
[8]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[9]   Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance [J].
Chen, Yuanjun ;
Gao, Rui ;
Ji, Shufang ;
Li, Haijing ;
Tang, Kun ;
Jiang, Peng ;
Hu, Haibo ;
Zhang, Zedong ;
Hao, Haigang ;
Qu, Qingyun ;
Liang, Xiao ;
Chen, Wenxing ;
Dong, Juncai ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3212-3221
[10]  
Cho A., 2022, FRONT CHEM, P10