Solvability of Peg Solitaire on Graphs is NP-Complete

被引:0
作者
Ito, Kazushi [1 ]
Takenaga, Yasuhiko [1 ]
机构
[1] Univ Electrocommun, Dept Comp & Net Engn, Chofu 1828585, Japan
关键词
key words; peg solitaire; puzzle; NP-completeness; graph;
D O I
10.1587/transinf.2022EDP7092
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Peg solitaire is a single-player board game. The goal of the game is to remove all but one peg from the game board. Peg solitaire on graphs is a peg solitaire played on arbitrary graphs. A graph is called solvable if there exists some vertex s such that it is possible to remove all but one peg starting with sas the initial hole. In this paper, we prove that it is NP-complete to decide if a graph is solvable or not.
引用
收藏
页码:1111 / 1116
页数:6
相关论文
共 11 条
  • [1] Beeler R.A., 2016, B I COMBIN APPL, V77, P30
  • [2] Beeler R.A., 2017, INTEGERS, V17, pG1
  • [3] Beeler RA, 2012, AUSTRALAS J COMB, V53, P127
  • [4] Beeler RA, 2015, AUSTRALAS J COMB, V63, P321
  • [5] Peg solitaire on graphs
    Beeler, Robert A.
    Hoilman, D. Paul
    [J]. DISCRETE MATHEMATICS, 2011, 311 (20) : 2198 - 2202
  • [6] Beeler RobertA., 2012, Involve, V5, P473
  • [7] Reversible peg solitaire on graphs
    Engbers, John
    Stocker, Christopher
    [J]. DISCRETE MATHEMATICS, 2015, 338 (11) : 2014 - 2019
  • [8] Peg Solitaire on Cartesian Products of Graphs
    Kreh, Martin
    de Wiljes, Jan-Hendrik
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (03) : 907 - 917
  • [9] Fool's solitaire on joins and Cartesian products of graphs
    Loeb, Sarah
    Wise, Jennifer
    [J]. DISCRETE MATHEMATICS, 2015, 338 (03) : 66 - 71
  • [10] NP-COMPLETENESS OF THE HAMILTONIAN CYCLE PROBLEM IN PLANAR DIGRAPHS WITH DEGREE BOUND 2
    PLESNIK, J
    [J]. INFORMATION PROCESSING LETTERS, 1979, 8 (04) : 199 - 201