Solving boundary value problems via the Nystrom method using spline Gauss rules

被引:0
作者
Hashemian, Ali [1 ]
Sliusarenko, Hanna [1 ]
Remogna, Sara [2 ]
Barrera, Domingo [3 ,4 ]
Barton, Michael [1 ,5 ]
机构
[1] BCAM Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Basque Country, Spain
[2] Univ Torino, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[3] Univ Granada, Dept Appl Math, Campus Fuentenueva, Granada 18071, Spain
[4] IMAG Inst Math, Ventanilla 11, Granada 18001, Spain
[5] Iberbasque Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Basque Country, Spain
关键词
Boundary value problems; Fredholm integral equation; Nystrom method; Spline Gauss quadratures; FREDHOLM INTEGRAL-EQUATIONS; QUADRATURE-RULES; NUMERICAL-SOLUTION; FINITE-ELEMENT; EFFICIENT; 2D; DOMAINS; SPACES; BEM;
D O I
10.1016/j.camwa.2023.04.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose to use spline Gauss quadrature rules for solving boundary value problems (BVPs) using the Nystrom method. When solving BVPs, one converts the corresponding partial differential equation inside a domain into the Fredholm integral equation of the second kind on the boundary in the sense of boundary integral equation (BIE). The Fredholm integral equation is then solved using the Nystrom method, which involves the use of a particular quadrature rule, thus, converting the BIE problem to a linear system. We demonstrate this concept on the 2D Laplace problem over domains with smooth boundary as well as domains containing corners. We validate our approach on benchmark examples and the results indicate that, for a fixed number of quadrature points (i.e., the same computational effort), the spline Gauss quadratures return an approximation that is by one to two orders of magnitude more accurate compared to the solution obtained by traditional polynomial Gauss counterparts.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 70 条
[1]   Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM [J].
Aimi, A. ;
Calabro, F. ;
Diligenti, M. ;
Sampoli, M. L. ;
Sangalli, G. ;
Sestini, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 331 :327-342
[2]   Isogemetric analysis and symmetric Galerkin BEM: A 2D numerical study [J].
Aimi, A. ;
Diligenti, M. ;
Sampoli, M. L. ;
Sestini, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 :173-186
[3]   Superconvergent methods based on quasi-interpolating operators for fredholm integral equations of the second kind. [J].
Allouch, C. ;
Remogna, S. ;
Sbibih, D. ;
Tahrichi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 404
[4]   Solving Fredholm integral equations by approximating kernels by spline quasi-interpolants [J].
Allouch, Chafik ;
Sablonniere, Paul ;
Sbibih, Driss .
NUMERICAL ALGORITHMS, 2011, 56 (03) :437-453
[5]   A Nystrom-based finite element method on polygonal elements [J].
Anand, Akash ;
Ovall, Jeffrey S. ;
Weisser, Steffen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) :3971-3986
[6]   An efficient high-order Nystrom scheme for acoustic scattering by inhomogeneous penetrable media withdiscontinuous material interface [J].
Anand, Akash ;
Pandey, Ambuj ;
Kumar, B. V. Rathish ;
Paul, Jagabandhu .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 311 :258-274
[7]  
[Anonymous], 1928, Soc. Sci. Fenn. Comment. Phys.-Math
[8]  
[Anonymous], 2012, Numerical Analysis
[9]  
ATKINSON K, 1987, MATH COMPUT, V48, P595, DOI 10.1090/S0025-5718-1987-0878693-6
[10]  
Atkinson K, 2009, Theoretical Numerical Analysis: A Functional Analysis Framework, V3rd