Generic differential equations are strongly minimal

被引:2
作者
DeVilbiss, Matthew [1 ]
Freitag, James [2 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
关键词
model theory; differential equations; strong minimality; AX-LINDEMANN-WEIERSTRASS; 4TH PAINLEVE EQUATIONS; CONJECTURE; FIELDS; 2ND;
D O I
10.1112/S0010437X23007212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop a new technique for showing that a nonlinear algebraic differential equation is strongly minimal based on the recently developed notion of the degree of non-minimality of Freitag and Moosa. Our techniques are sufficient to show that generic order $h$ differential equations with non-constant coefficients are strongly minimal, answering a question of Poizat (1980).
引用
收藏
页码:1387 / 1412
页数:27
相关论文
共 41 条
  • [1] [Anonymous], 1995, Hokkaido Math. J.
  • [3] Blazquez-Sanz D., 2020, ANN FAC SCI TOULOUSE, V6, P1265
  • [4] BRESTOVSKI M, 1989, PAC J MATH, V140, P1
  • [5] Ax-Lindemann-Weierstrass with derivatives and the genus 0 Fuchsian groups
    Casale, Guy
    Freitag, James
    Nagloo, Joel
    [J]. ANNALS OF MATHEMATICS, 2020, 192 (03) : 721 - 765
  • [6] Chatzidakis Z, 2008, J INST MATH JUSSIEU, V7, P653, DOI 10.1017/S1474748008000273
  • [7] Freitag J., 2012, THESIS U ILL
  • [8] The degree of nonminimality is at most 2
    Freitag, James
    Jaoui, Remi
    Moosa, Rahim
    [J]. JOURNAL OF MATHEMATICAL LOGIC, 2023, 23 (03)
  • [9] On the Equations of Poizat and Lienard
    Freitag, James
    Jaoui, Remi
    Marker, David
    Nagloo, Joel
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (19) : 16478 - 16539
  • [10] Freitag J, 2021, Arxiv, DOI arXiv:2106.02537