High interfacial capacitance enabled stable lithium metal anode for practical lithium metal pouch cells

被引:35
作者
Long, Kecheng [1 ]
Huang, Shaozhen [1 ]
Wang, Han [1 ]
Jin, Zhaoqing [2 ]
Wang, Anbang [2 ]
Wang, Zhongming [1 ]
Qing, Piao [1 ]
Liu, Zhijian [1 ]
Chen, Libao [1 ]
Mei, Lin [1 ]
Wang, Weikun [2 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Res Inst Chem Def, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Siloxene; Lithium metal anode; Interfacial capacitance; Lithium-sulfur batteries; Pouch cells; LI; PERFORMANCE; ELECTRODE; SILOXENE; LAYER;
D O I
10.1016/j.ensm.2023.02.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In previous studies, it has been proposed that electrode materials with lithium affinity possess a large adsorption energy for Li+ , which significantly reduces the nucleation overpotential of Li. However, the underlying mech-anism behind the interfacial electrochemical reaction of materials with lithium affinity remains unclear. Herein, we establish an interfacial capacitance mechanistic model to decipher how a lithiophilic porous lithiated siloxene interfacial skeleton (LSIS) on Li foil possesses a negligible nucleation overpotential. The presented theory proves the strong lithium affinity of LSIS can increase interfacial capacitance, which can greatly reduce the electro-chemical polarization. Meanwhile, the hybrid ionic/electronic conducting LSIS can serve as a stable interfacial skeleton to homogenize deposition of Li at the interface to obtain the dense Li deposition. When LSIS@Li coupled with LiCoO2 , the resulting pouch full cell (0.5 Ah) exhibits 80% capacity retention after 145th at 0.5 C. Furthermore, a 1.6 Ah LSIS@Li||S pouch cell operates 80% capacity retention after 66 cycles at 0.2 C. The proposed interfacial capacitance mechanistic model deepens and develops the theory of lithium affinity, thus guiding the design of practical lithium metal anode.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 63 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]  
Bagotsky VS, 2006, FUNDAMENTALS OF ELECTROCHEMISTRY, 2ND EDITION, P1
[3]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[4]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[5]   Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes [J].
Chen, Kuan-Hung ;
Sanchez, Adrian J. ;
Kazyak, Eric ;
Davis, Andrew L. ;
Dasgupta, Neil P. .
ADVANCED ENERGY MATERIALS, 2019, 9 (04)
[6]   Brushed Metals for Rechargeable Metal Batteries [J].
Chen, Weiyin ;
Salvatierra, Rodrigo, V ;
Li, John T. ;
Luong, Duy X. ;
Beckham, Jacob L. ;
Li, Victor D. ;
La, Nghi ;
Xu, Jianan ;
Tour, James M. .
ADVANCED MATERIALS, 2022, 34 (31)
[7]   Failure analysis of high-energy-density lithium-sulfur pouch cells [J].
Chen, Zi-Xian ;
Hou, Li-Peng ;
Bi, Chen-Xi ;
Cheng, Qian ;
Zhang, Xue-Qiang ;
Li, Bo-Quan ;
Huang, Jia-Qi .
ENERGY STORAGE MATERIALS, 2022, 53 :315-321
[8]   Toward Practical High-Energy-Density Lithium-Sulfur Pouch Cells: A Review [J].
Chen, Zi-Xian ;
Zhao, Meng ;
Hou, Li-Peng ;
Zhang, Xue-Qiang ;
Li, Bo-Quan ;
Huang, Jia-Qi .
ADVANCED MATERIALS, 2022, 34 (35)
[9]   The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Huang, Jia-Qi ;
Li, Peng ;
Zhu, Lin ;
Zhao, Lida ;
Zhang, Yingying ;
Zhu, Wancheng ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 6 :18-25
[10]   Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition [J].
Chi, Shang-Sen ;
Wang, Qingrong ;
Han, Bing ;
Luo, Chao ;
Jiang, Yidong ;
Wang, Jun ;
Wang, Chaoyang ;
Yu, Yan ;
Deng, Yonghong .
NANO LETTERS, 2020, 20 (04) :2724-2732