Enhancing stiffness-based cell sorting using power-law fluids in ridged microchannels

被引:4
作者
Chrit, Fatima Ezahra [1 ]
Barton, Joshua [1 ]
Sulchek, Todd [1 ]
Alexeev, Alexander [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
DETERMINISTIC LATERAL DISPLACEMENT; CIRCULATING TUMOR-CELLS; PARTICLE SEPARATION; SHEAR-FLOW; MIGRATION; MOTION; MODEL;
D O I
10.1063/5.0145921
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Sorting biological cells in heterogeneous cell populations is a critical task required in a variety of biomedical applications and therapeutics. Microfluidic methods are a promising pathway toward establishing label-free sorting based on cell intrinsic biophysical properties, such as cell size and compliance. Experiments and numerical studies show that microchannels decorated with diagonal ridges can be used to separate cell by stiffness in a Newtonian fluid. Here, we use computational modeling to probe stiffness-based cell sorting in ridged microchannels with a power-law shear thinning fluid. We consider compliant cells with a range of elasticities and examine the effects of ridge geometry on cell trajectories in microchannel with shear thinning fluid. The results reveal that shear thinning fluids can significantly enhance the resolution of stiffness-based cell sorting compared to Newtonian fluids. We explain the mechanism leading to the enhanced sorting in terms of hydrodynamic forces acting on cells during their interactions with the microchannel ridges.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[2]   Designing compliant substrates to regulate the motion of vesicles [J].
Alexeev, A ;
Verberg, R ;
Balazs, AC .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)
[3]   Modeling the motion of microcapsules on compliant polymeric surfaces [J].
Alexeev, A ;
Verberg, R ;
Balazs, AC .
MACROMOLECULES, 2005, 38 (24) :10244-10260
[4]   Designing microfluidic channel that separates elastic particles upon stiffness [J].
Arata, John P. ;
Alexeev, Alexander .
SOFT MATTER, 2009, 5 (14) :2721-2724
[5]   Circulating Tumor Cells from Patients with Advanced Prostate and Breast Cancer Display Both Epithelial and Mesenchymal Markers [J].
Armstrong, Andrew J. ;
Marengo, Matthew S. ;
Oltean, Sebastian ;
Kemeny, Gabor ;
Bitting, Rhonda L. ;
Turnbull, James D. ;
Herold, Christina I. ;
Marcom, Paul K. ;
George, Daniel J. ;
Garcia-Blanco, Mariano A. .
MOLECULAR CANCER RESEARCH, 2011, 9 (08) :997-1007
[6]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[7]   Droplet microfluidic technology for single-cell high-throughput screening [J].
Brouzes, Eric ;
Medkova, Martina ;
Savenelli, Neal ;
Marran, Dave ;
Twardowski, Mariusz ;
Hutchison, J. Brian ;
Rothberg, Jonathan M. ;
Link, Darren R. ;
Perrimon, Norbert ;
Samuels, Michael L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14195-14200
[8]   A lattice spring model of heterogeneous materials with plasticity [J].
Buxton, GA ;
Care, CM ;
Cleaver, DJ .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2001, 9 (06) :485-497
[9]   Cancer genomics: from discovery science to personalized medicine [J].
Chin, Lynda ;
Andersen, Jannik N. ;
Futreal, P. Andrew .
NATURE MEDICINE, 2011, 17 (03) :297-303
[10]   Microfluidic Platform to Transduce Cell Viability to Distinct Flow Pathways for High-Accuracy Sensing [J].
Chrit, Fatima Ezahra ;
Raj, Abhishek ;
Young, Katherine M. ;
Stone, Nicholas E. ;
Shankles, Peter G. ;
Lokireddy, Kesiharjun ;
Flowers, Christopher ;
Waller, Edmund K. ;
Alexeev, Alexander ;
Sulchek, Todd .
ACS SENSORS, 2021, 6 (10) :3789-3799