MLF-IOSC: Multi-Level Fusion Network With Independent Operation Search Cell for Low-Dose CT Denoising

被引:8
作者
Shen, Jinbo [1 ]
Luo, Mengting [2 ]
Liu, Han [1 ]
Liao, Peixi [3 ]
Chen, Hu [1 ]
Zhang, Yi [4 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Natl Key Lab Fundamental Sci Synthet Vis, Chengdu 610065, Peoples R China
[3] Sixth Peoples Hosp Chengdu, Dept Sci Res & Educ, Chengdu 610065, Peoples R China
[4] Sichuan Univ, Sch Cyber Sci & Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography; Noise reduction; Convolution; Computer architecture; Laplace equations; Image reconstruction; Search problems; Low-dose CT; deep learning; neural architecture search; Laplacian;
D O I
10.1109/TMI.2022.3224396
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Computed tomography (CT) is widely used in clinical medicine, and low-dose CT (LDCT) has become popular to reduce potential patient harm during CT acquisition. However, LDCT aggravates the problem of noise and artifacts in CT images, increasing diagnosis difficulty. Through deep learning, denoising CT images by artificial neural network has aroused great interest for medical imaging and has been hugely successful. We propose a framework to achieve excellent LDCT noise reduction using independent operation search cells, inspired by neural architecture search, and introduce the Laplacian to further improve image quality. Employing patch-based training, the proposed method can effectively eliminate CT image noise while retaining the original structures and details, hence significantly improving diagnosis efficiency and promoting LDCT clinical applications.
引用
收藏
页码:1145 / 1158
页数:14
相关论文
共 56 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [3] Current concepts - Computed tomography - An increasing source of radiation exposure
    Brenner, David J.
    Hall, Eric J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) : 2277 - 2284
  • [4] A non-local algorithm for image denoising
    Buades, A
    Coll, B
    Morel, JM
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 60 - 65
  • [5] THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE
    BURT, PJ
    ADELSON, EH
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) : 532 - 540
  • [6] LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT
    Chen, Hu
    Zhang, Yi
    Chen, Yunjin
    Zhang, Junfeng
    Zhang, Weihua
    Sun, Huaiqiang
    Lv, Yang
    Liao, Peixi
    Zhou, Jiliu
    Wang, Ge
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1333 - 1347
  • [7] Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network
    Chen, Hu
    Zhang, Yi
    Kalra, Mannudeep K.
    Lin, Feng
    Chen, Yang
    Liao, Peixi
    Zhou, Jiliu
    Wang, Ge
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) : 2524 - 2535
  • [8] Fast Image Processing with Fully-Convolutional Networks
    Chen, Qifeng
    Xu, Jia
    Koltun, Vladlen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2516 - 2525
  • [9] Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation
    Chen, Xin
    Xie, Lingxi
    Wu, Jun
    Tian, Qi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1294 - 1303
  • [10] Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution
    Chen, Yunpeng
    Fan, Haoqi
    Xu, Bing
    Yan, Zhicheng
    Kalantidis, Yannis
    Rohrbach, Marcus
    Yan, Shuicheng
    Feng, Jiashi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3434 - 3443