A Class of Quadratic Matrix Equations over Finite Fields

被引:0
作者
Chen, Yin [1 ,2 ]
Zhang, Xinxin [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
matrix equations; general linear groups; finite fields; separating invariants; INVARIANTS;
D O I
10.1142/S1005386723000147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit an explicit formula for the cardinality of solutions to a class of quadratic matrix equations over finite fields. We prove that the orbits of these solutions under the natural conjugation action of the general linear groups can be separated by classical conjugation invariants defined by characteristic polynomials. We also find a generating set for the vanishing ideal of these orbits.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1957, Ann. Mat. Pura Appl.
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
Brown W. C., 1993, MONOGRAPHS TXB PURE, V169
[4]   Representations of elementary abelian p-groups and finite subgroups of fields [J].
Campbell, H. E. A. ;
Chuai, J. ;
Shank, R. J. ;
Wehlau, D. L. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (05) :2015-2035
[5]   Modular invariants of finite gluing groups [J].
Chen, Yin ;
Shank, R. James ;
Wehlau, David L. .
JOURNAL OF ALGEBRA, 2021, 566 :405-434
[6]  
Derksen Harm, 2015, Encyclopaedia of Mathematical Sciences, V130
[7]   Commuting Solutions of a Quadratic Matrix Equation for Nilpotent Matrices [J].
Dong, Qixiang ;
Ding, Jiu ;
Huang, Qianglian .
ALGEBRA COLLOQUIUM, 2018, 25 (01) :31-44
[8]   Complete commuting solutions of the Yang-Baxter-like matrix equation for diagonalizable matrices [J].
Dong, Qixiang ;
Ding, Jiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (01) :194-201
[9]  
Hodges J.H., 1958, AM MATH MON, V65, P518
[10]   BILINEAR MATRIX EQUATION OVER FINITE FIELD [J].
HODGES, JH .
DUKE MATHEMATICAL JOURNAL, 1964, 31 (04) :661-&