Constraining the Cosmic Merger History of Intermediate-mass Black Holes with Gravitational Wave Detectors

被引:10
作者
Fragione, Giacomo [1 ,2 ]
Loeb, Abraham [3 ]
机构
[1] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys CIE, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[3] Harvard Univ, Astron Dept, 60 Garden St, Cambridge, MA 02138 USA
关键词
DENSE STAR-CLUSTERS; WHITE-DWARFS; GLOBULAR-CLUSTERS; TIDAL DISRUPTION; RATIO INSPIRALS; GROWTH;
D O I
10.3847/1538-4357/acb34e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Intermediate-mass black holes (IMBHs) have not been detected beyond any reasonable doubt through either dynamical or accretion signatures. Gravitational waves (GWs) represent an unparalleled opportunity to survey the sky and detect mergers of IMBHs, making it possible for the first time to constrain their formation, growth, and merger history across cosmic time. While the current network LIGO-Virgo-KAGRA is significantly limited in detecting mergers of IMBH binaries, the next generation of ground-based observatories and space-based missions promise to shed light on the IMBH population through the detection of several events per year. Here, we assess this possibility by determining the optimal network of the next generation of GW observatories to reconstruct the IMBH merger history across cosmic time. We show that Voyager, the Einstein Telescope, and Cosmic Explorer will be able to constrain the distribution of the primary masses of merging IMBHs up to similar to 10(3) M (circle dot) and with mass ratio greater than or similar to 0.1, while LISA will complementary do so at higher mass and smaller mass ratios. Therefore, a network of next-generation ground-based and space-based observatories will potentially reconstruct the merger history of IMBHs. Moreover, IMBHs with masses less than or similar to 5 x 10(3) M (circle dot) could be observed in multiband up to a redshift of z approximate to 4, ushering in a new era of GW astronomy.
引用
收藏
页数:8
相关论文
共 59 条
  • [1] Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, A.
    Adams, C.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, G.
    Allocca, A.
    Aloy, M. A.
    Altin, P. A.
    Amato, A.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S., V
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Aronson, S. M.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Badaracco, F.
    [J]. PHYSICAL REVIEW D, 2019, 100 (06)
  • [2] Planck 2015 results XVII. Constraints on primordial non-Gaussianity
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Arrojam, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [3] Amaro-Seoane P, 2017, Arxiv, DOI [arXiv:1702.00786, DOI 10.48550/ARXIV.1702.00786]
  • [4] [Anonymous], 2020, Class. Quant. Grav.
  • [5] Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections
    Antonini, Fabio
    Gieles, Mark
    Gualandris, Alessia
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (04) : 5008 - 5021
  • [6] The MEGaN project II. Gravitational waves from intermediate-mass and binary black holes around a supermassive black hole
    Arca-Sedda, M.
    Capuzzo-Dolcetta, R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (01) : 152 - 171
  • [7] Gravitational wave sources from inspiralling globular clusters in the Galactic Centre and similar environments
    Arca-Sedda, Manuel
    Gualandris, Alessia
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (04) : 4423 - 4442
  • [8] Baker T, 2022, Arxiv, DOI arXiv:2209.14398
  • [9] A ∼ 50,000 M⊙ SOLAR MASS BLACK HOLE IN THE NUCLEUS OF RGG 118
    Baldassare, Vivienne F.
    Reines, Amy E.
    Gallo, Elena
    Greene, Jenny E.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2015, 809 (01)
  • [10] Formation of supermassive black holes by direct collapse in pre-galactic haloes
    Begelman, Mitchell C.
    Volonteri, Marta
    Rees, Martin J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 370 (01) : 289 - 298