A 8-h-Precision 6T SRAM Computing-in-Memory Macro Using Segmented-Bitline Charge-Sharing Scheme for AI Edge Chips

被引:35
作者
Su, Jian-Wei [1 ,2 ]
Chou, Yen-Chi [1 ]
Liu, Ruhui [1 ]
Liu, Ta-Wei [1 ]
Lu, Pei-Jung [3 ]
Wu, Ping-Chun [3 ]
Chung, Yen-Lin [1 ]
Hong, Li-Yang [3 ]
Ren, Jin-Sheng [1 ]
Pan, Tianlong [3 ]
Jhang, Chuan-Jia [1 ]
Huang, Wei-Hsing [1 ]
Chien, Chih-Han [1 ]
Mei, Peng-, I [2 ]
Li, Sih-Han [5 ]
Sheu, Shyh-Shyuan [5 ]
Chang, Shih-Chieh [5 ]
Lo, Wei-Chung [5 ]
Wu, Chih-, I [6 ]
Si, Xin [1 ]
Lo, Chung-Chuan [4 ]
Liu, Ren-Shuo [1 ]
Hsieh, Chih-Cheng [1 ]
Tang, Kea-Tiong [1 ]
Chang, Meng-Fan [1 ]
机构
[1] Natl Tsing Hua Univ NTHU, Dept Elect Engn, Hsinchu 300044, Taiwan
[2] Ind Technol Res Inst ITRI, Elect & Optoelect Syst Res Labs EOSL, Hsinchu 310401, Taiwan
[3] Natl Tsing Hua Univ NTHU, Inst Elect Engn, Hsinchu 300044, Taiwan
[4] Natl Tsing Hua Univ NTHU, Inst Syst Neurosci, Hsinchu 300044, Taiwan
[5] Ind Technol Res Inst ITRI, Hsinchu, Taiwan
[6] Ind Technol Res Inst ITRI, Elect & Optoelect Syst Res Labs, Hsinchu, Taiwan
关键词
Artificial intelligence (AI); charge sharing; computing-in-memory (CIM); inference; static random access memory (SRAM); UNIT-MACRO; COMPUTATION; EFFICIENT; C3SRAM;
D O I
10.1109/JSSC.2022.3199077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Advances in static random access memory (SRAM)-CIM devices are meant to increase capacity while improving energy efficiency (EF) and reducing computing latency (T-AC). This work presents a novel SRAM-CIM structure using: 1) a segmented-bitline charge-sharing (SBCS) scheme for multiply-and-accumulate (MAC) operations with low energy consumption and a consistently high signal margin across MAC values; 2) a bitline-combining (BL-CMB) scheme to reduce the number of analog-to-digital converters (ADCs) and, thereby, provide options in determining a tradeoff between EF and inference accuracy; 3) a source-injection local-multiplication cell (SILMC) connected to two types of global-bitline-switch to support the SBCS and BL-CMB schemes with consistent signal margin against process variation in transistors; and 4) prioritized-hybrid ADC to suppress area and power overhead for analog readout operations. We fabricated a 28-nm 384-kb SRAM-CIM macro using foundry-provided compact-6T cells supporting MAC operations with 16 accumulations of 8-b input and 8-b weight with near-full precision output (20 b). This macro achieved T-AC of 7.2 ns and EF of 22.75 TOPS/W performing 8-b-MAC operations.
引用
收藏
页码:877 / 892
页数:16
相关论文
共 41 条
[1]   Xcel-RAM: Accelerating Binary Neural Networks in High-Throughput SRAM Compute Arrays [J].
Agrawal, Amogh ;
Jaiswal, Akhilesh ;
Roy, Deboleena ;
Han, Bing ;
Srinivasan, Gopalakrishnan ;
Ankit, Aayush ;
Roy, Kaushik .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (08) :3064-3076
[2]   X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static Random Access Memories [J].
Agrawal, Amogh ;
Jaiswal, Akhilesh ;
Lee, Chankyu ;
Roy, Kaushik .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (12) :4219-4232
[3]   CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks [J].
Biswas, Avishek ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) :217-230
[4]  
Biswas A, 2018, ISSCC DIG TECH PAP I, P488, DOI 10.1109/ISSCC.2018.8310397
[5]  
Chen WH, 2018, ISSCC DIG TECH PAP I, P494, DOI 10.1109/ISSCC.2018.8310400
[6]  
Cheng-Xin Xue, 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC), P244, DOI 10.1109/ISSCC19947.2020.9063078
[7]   A 4-Kb 1-to-8-bit Configurable 6T SRAM-Based Computation-in-Memory Unit-Macro for CNN-Based AI Edge Processors [J].
Chiu, Yen-Cheng ;
Zhang, Zhixiao ;
Chen, Jia-Jing ;
Si, Xin ;
Liu, Ruhui ;
Tu, Yung-Ning ;
Su, Jian-Wei ;
Huang, Wei-Hsing ;
Wang, Jing-Hong ;
Wei, Wei-Chen ;
Hung, Je-Min ;
Sheu, Shyh-Shyuan ;
Li, Sih-Han ;
Wu, Chih-I ;
Liu, Ren-Shuo ;
Hsieh, Chih-Cheng ;
Tang, Kea-Tiong ;
Chang, Meng-Fan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (10) :2790-2801
[8]  
Dong Q, 2020, ISSCC DIG TECH PAP I, P242, DOI [10.1109/ISSCC19947.2020.9062985, 10.1109/isscc19947.2020.9062985]
[9]  
Dong Q, 2017, SYMP VLSI CIRCUITS, pC160, DOI 10.23919/VLSIC.2017.8008465
[10]  
Gonugondla SK, 2018, ISSCC DIG TECH PAP I, P490, DOI 10.1109/ISSCC.2018.8310398