This paper deals with a numerical method for solving variable-order fractional optimal control problem with a fractional Bolza cost composed as the aggregate of a standard Mayer cost and a fractional Lagrange cost given by a variable-order Riemann-Liouville fractional integral. Using the integration by part formula and the calculus of variations, the necessary optimality conditions are derived in terms of two-point variable-order boundary value problem. Operational matrices of variable-order right and left Riemann-Liouville integration are derived, and by using them, the two-point boundary value problem is reduced into the system of algebraic equations. Additionally, the convergence analysis of the proposed method has been considered. Moreover, illustrative examples are given to demonstrate the applicability of the proposed method.
机构:
Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, VietnamTon Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
Ngo, Hoa T. B.
Razzaghi, Mohsen
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Dept Math & Stat, Starkville, MS USATon Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
Razzaghi, Mohsen
Vo, Thieu N.
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, VietnamTon Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam