Automating Surgical Peg Transfer: Calibration With Deep Learning Can Exceed Speed, Accuracy, and Consistency of Humans

被引:19
作者
Hwang, Minho [1 ]
Ichnowski, Jeffrey [2 ]
Thananjeyan, Brijen [2 ]
Seita, Daniel [2 ]
Paradis, Samuel [2 ]
Fer, Danyal [3 ]
Low, Thomas [4 ]
Goldberg, Ken [2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Robot Engn, Daegu 42988, South Korea
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94709 USA
[3] Univ Calif San Francisco, Dept Gen Surg, San Francisco Bay Area, San Francisco, CA 94602 USA
[4] SRI Int, Robot Lab, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
Task analysis; Robots; Handover; Robot kinematics; Trajectory; Training; Sensors; Calibration; depth sensing; robot kinematics; medical robots and systems; model learning and control; task automation; trajectory planning; RAVEN-II;
D O I
10.1109/TASE.2022.3171795
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Peg transfer is a well-known surgical training task in the Fundamentals of Laparoscopic Surgery (FLS). While human surgeons teleoperate robots such as the da Vinci to perform this task with high speed and accuracy, it is challenging to automate. This paper presents a novel system and control method using a da Vinci Research Kit (dVRK) surgical robot and a Zivid depth sensor, and a human subjects study comparing performance on three variants of the peg-transfer task: unilateral, bilateral without handovers, and bilateral with handovers. The system combines 3D printing, depth sensing, and deep learning for calibration with a new analytic inverse kinematics model and time-minimized motion controller. In a controlled study of 3384 peg transfer trials performed by the system, an expert surgical resident, and 9 volunteers, results suggest that the system achieves accuracy on par with the experienced surgical resident and is significantly faster and more consistent than the surgical resident and volunteers. The system also exhibits the highest consistency and lowest collision rate. To our knowledge, this is the first autonomous system to achieve ``superhuman'' performance on a standardized surgical task. All data is available at https://sites.google.com/view/surgicalpegtransfer
引用
收藏
页码:909 / 922
页数:14
相关论文
共 47 条
[1]   Parallelism in Autonomous Robotic Surgery [J].
Abdelaal, Alaa Eldin ;
Liu, Jordan ;
Hong, Nancy ;
Hager, Gregory D. ;
Salcudean, Septimiu E. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :1824-1831
[2]   LEAST-SQUARES FITTING OF 2 3-D POINT SETS [J].
ARUN, KS ;
HUANG, TS ;
BLOSTEIN, SD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :699-700
[3]   Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer [J].
Brown, Jeremy D. ;
O'Brien, Conor E. ;
Leung, Sarah C. ;
Dumon, Kristoffel R. ;
Lee, David I. ;
Kuchenbecker, Katherine J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) :2263-2275
[4]   The impact of robotic surgery on the surgical management of prostate cancer in the USA [J].
Chang, Steven L. ;
Kibel, Adam S. ;
Brooks, James D. ;
Chung, Benjamin I. .
BJU INTERNATIONAL, 2015, 115 (06) :929-936
[5]  
Chughtai Bilal, 2015, Urol Pract, V2, P49, DOI 10.1016/j.urpr.2014.09.002
[6]   Accelerating Surgical Robotics Research: A Review of 10 Years With the da Vinci Research Kit [J].
D'Ettorre, Claudia ;
Mariani, Andrea ;
Stilli, Agostino ;
Baena, Ferdinando Rodriguez Y. ;
Valdastri, Pietro ;
Deguet, Anton ;
Kazanzides, Peter ;
Taylor, Russell H. ;
Fischer, Gregory S. ;
DiMaio, Simon P. ;
Menciassi, Arianna ;
Stoyanov, Danail .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2021, 28 (04) :56-78
[7]   Development of a model for training and evaluation of laparoscopic skills [J].
Derossis, AM ;
Fried, GM ;
Abrahamowicz, M ;
Sigman, HH ;
Barkun, JS ;
Meakins, JL .
AMERICAN JOURNAL OF SURGERY, 1998, 175 (06) :482-487
[8]   DESERTS: DElay-tolerant SEmi-autonomous Robot Teleoperation for Surgery [J].
Gonzalez, Glebys ;
Agarwal, Mridul ;
Balakuntala, Mythra, V ;
Rahman, Md Masudur ;
Kaur, Upinder ;
Voyles, Richard M. ;
Aggarwal, Vaneet ;
Xue, Yexiang ;
Wachs, Juan .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :12693-12700
[9]  
Guthart G. S., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P618, DOI 10.1109/ROBOT.2000.844121
[10]  
Haghighipanah M, 2016, IEEE INT CONF ROBOT, P4135, DOI 10.1109/ICRA.2016.7487606